Customer Clustering Using a Combination of Fuzzy C-Means and Genetic Algorithms
- Azarnoush Ansari
- Arash Riasi
Abstract
This study intends to combine the fuzzy c-means clustering and genetic algorithms to cluster the customers of steel industry. The customers were divided into two clusters by using the variables of the LRFM (length, recency, frequency, monetary value) model. Results indicated that customers belonging to the first cluster had a higher length of the relationship, recency of trade, and frequency of trade but lower monetary value compared to the average values of these criteria for all customers. The results also showed that customers belonging to the second
cluster had a higher recency of trade and monetary value but lower length of the relationship and frequency of trade compared to the average values of these criteria for all customers. It was also found that the combined algorithm (i.e., fuzzy c-means clustering and genetic algorithm) used in this study had a lower mean squared error (MSE) compared to fuzzy c-means clustering.
- Full Text: PDF
- DOI:10.5539/ijbm.v11n7p59
Journal Metrics
Google-based Impact Factor (2023): 0.86
h-index(2023): 152
i10-index(2023): 1168
Index
- Academic Journals Database
- ACNP
- AIDEA list (Italian Academy of Business Administration)
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- EBSCOhost
- Electronic Journals Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- IBZ Online
- JournalTOCs
- Library and Archives Canada
- LOCKSS
- MIAR
- National Library of Australia
- Norwegian Centre for Research Data (NSD)
- PKP Open Archives Harvester
- Publons
- Qualis/CAPES
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- UoS Library
- WorldCat
- ZBW-German National Library of Economics
Contact
- Stephen LeeEditorial Assistant
- ijbm@ccsenet.org