CPN Based Modeling of Tourism Demand Forecasting
- Hua Bai
- Haoyuan Zhang
Abstract
The tourism demand has become more and more diversified and sensitive to traveling environment, resulting in the high volatility of tourism market. Travel agencies, scenic spots, hotels and other tourism businesses in the tourism supply chain (TSC) need a tight collaboration in order to minimize cost and improve responsiveness and service level. The existence of the bullwhip effect will cause the waste of resources and low efficiency, thus collaborative demand forecasting becomes a good practice to enhance sharing of information and resources, and as a result improving the efficiency and effectiveness of tourism demand forecasting. This paper proposes a collaborative tourism demand forecasting framework based on Colored Petri Net (CPN), which can simulate and examine the effectiveness of tourism supply chain collaboration.
- Full Text: PDF
- DOI:10.5539/ijbm.v12n1p28
Journal Metrics
Google-based Impact Factor (2023): 0.86
h-index(2023): 152
i10-index(2023): 1168
Index
- Academic Journals Database
- ACNP
- AIDEA list (Italian Academy of Business Administration)
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- EBSCOhost
- Electronic Journals Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- IBZ Online
- JournalTOCs
- Library and Archives Canada
- LOCKSS
- MIAR
- National Library of Australia
- Norwegian Centre for Research Data (NSD)
- PKP Open Archives Harvester
- Publons
- Qualis/CAPES
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- UoS Library
- WorldCat
- ZBW-German National Library of Economics
Contact
- Stephen LeeEditorial Assistant
- ijbm@ccsenet.org