A Viscosity Approximation Method for the Split Feasibility Problems in Hilbert Space
- Li Yang
Abstract
In this paper, the most basic idea is to apply the viscosity approximation method to study the split feasibility problem (SFP), we will be in the infinite-dimensional Hilbert space to study the problem . We defined $x_{0}\in C$ as arbitrary and $x_{n+1}=(1-\alpha_{n})P_{C}(I-\lambda_{n}A^{*}(I-P_{Q})A)x_{n}+\alpha_{n}f(x_{n})$, for $n\geq0,$ where $\{\alpha_{n}\}\subset(0,1)$. Under the proper control conditions of some parameters, we show that the sequence $\{x_{n}\}$ converges strongly to a solution of SFP. The results in this paper extend and further improve the relevant conclusions in Deepho (Deepho, J. \& Kumam, P., 2015).- Full Text: PDF
- DOI:10.5539/jmr.v9n1p84
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org