A Viscosity Approximation Method for the Split Feasibility Problems in Hilbert Space
Abstract
In this paper, the most basic idea is to apply the viscosity approximation method to study the split feasibility problem (SFP), we will be in the infinite-dimensional Hilbert space to study the problem . We defined $x_{0}\in C$ as arbitrary and $x_{n+1}=(1-\alpha_{n})P_{C}(I-\lambda_{n}A^{*}(I-P_{Q})A)x_{n}+\alpha_{n}f(x_{n})$, for $n\geq0,$ where $\{\alpha_{n}\}\subset(0,1)$. Under the proper control conditions of some parameters, we show that the sequence $\{x_{n}\}$ converges strongly to a solution of SFP. The results in this paper extend and further improve the relevant conclusions in Deepho (Deepho, J. \& Kumam, P., 2015).