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Abstract

In this paper, the most basic idea is to apply the viscosity approximation method to study the split feasibility problem
(SFP), we will be in the infinite-dimensional Hilbert space to study the problem . We defined xy € C as arbitrary and
Xpe1 = (1 = a)Pc( = ,A*(I — Po)A)x, + @, f(x,), for n > 0, where {a,} C (0, 1). Under the proper control conditions of
some parameters, we show that the sequence {x,} converges strongly to a solution of SFP. The results in this paper extend
and further improve the relevant conclusions in Deepho (Deepho, J. & Kumam, P., 2015).
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1. Introduction

In recent years, a large number of scholars have done a lot of meaningful research on the split feasibility problem (SFP),
because the problem in signal processing and linear constrained optimization problems such as the feasible solution plays
an important role (Censor, Y., et al, 2006; Byrne, C., 2002; Byrne, C., 2004.; Yang, Q., 2004.; Qu, B. & Xiu, N., 2005.;
Xu, H. K., 2006.; Xu, H. K., 2010). In 1994,the SFP was first introduced by Censor and Elfving (Censor, Y. & Elfving,
T., 1994), which is to find a point x* satisfying the property:

x*eC,Ax" € Q, (D
where C and Q be nonempty closed convex subsets of the real Hilbert spaces H; and H,, A : H; — H, be a bounded
linear operator.

In order to find the solution of the problem SFP (1), many authors have proposed a variety of algorithms, it is worth noting
that Byrne (Byrne, C., 2002) proposed the so-called CQ algorithm, the algorithm is this: take an initial point xy € H;
arbitrarily, and define the iterative step as

Xne1 = Po(xy — AA™(I = PgAxy),n > 0, 2)

Where 0 < A < 2/p(A*A) and P¢ denotes the projector onto C and p(A*A) is the spectral radius of the self-adjoint operator
A*A, I denotes the identity operator.Then the sequence {x,},>o generated by (2) converges strongly to a solution of SFP
whenever H, is finite-dimensional and whenever there exists a solution to SFP(1).

By Byrne’s CQ algorithm and Xu’s viscosity approximatiom method (Xu, H. K., 2004), In 2015, Deepho and Kumam
(Deepho, J. & Kumam, P., 2015) proposed the following algorithm:

Xnet = (1 = @p)Pc(I = AA™(I = Po)A)xy + anf(xy),n 2 1, 3)

where {a,} € (0,1),0 < 2 < 2/||Al?, f : C = C is a contraction on C, and they proved that when the parameter {a,}
satisfied certain conditions ,then the algorithm (3) is strong converges to a solution of SFP(1). In this paper, we study the
following more general algorithm which generates a sequence according to the recursive formula:

Xpe1 = (1 —a,)Pc - /lnA*(I - PQ)A)xn + a’nf(xn)an >0, “4)
And we will show that the sequence {x,},>o defined by (4) strongly converges to a solution of SFP(1).

2. Preliminaries

Throughout this paper, we always assumes that H; and H, are two real Hilbert spaces with inner product (-) and norm
Il - II, we use Q to denote the solution set of SFP(1), thatis Q = {x € C : Ax € Q} = C N A~'Q, The notation: — denotes
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weak convergence and — denotes strong convergence. Below we first list the definitions and theorems to be used in this
paper.

Definition 2.1. Assume H is a real Hilbert space. Let T : H — H be the nonlinear operators,

(1) ) T is nonexpansive if ||[Tx — Ty|| < |lx — y||, for all x,y € H ;

(i) T is firmly nonexpansive if (x —y, Tx — Ty) > ||Tx — Ty|l>, x,y € H,;

(1ii1)T is v— inverse strongly monotone (v— ism), with v > 0, if

(x=y,Tx—Ty) 2 V|Tx — Tyllz, X,y € H.
(iv) T is averaged if T = (1 — @)l + aS £where @ € (0,1) £and S : H — H is nonexpansive. In this case ,we also say that
T is a— averaged. Thus firmly nonexpansive mappings (in particular ,the projections ) is %— averaged mappings.
Definition 2.2. An operator T : H — H is called oriented operator if Fix(T) # @, and

(z—=Tx,x—Tx)<0, xeH.

In fact, we know that the oriented operator also contains firmly nonexpansive operator. The following is a useful charac-
terization of projections.
Proposition 2.1 Given x € H and z € C. Then z = Pcx if and only if

<x-zy-z><0,VyeC.

We collect some basic properties of averaged mappings and inverse strongly monotone operators in the following lemma.
Lemma 2.1 (Qu, B. & Xiu, N., 2005; Xu, H. K., 2011) Let T : H — H be a given mapping.

(1) ) T is nonexpansive if and only if the complement I — T is % — ism;

@GA)If T is v — ism,and y > 0, then yT is 5 — ism;

(iii) T is averaged if and only if the complement / — T is v — ism for some v > % . Indeed, for @ € (0, 1), T is a— averaged
ifand only if I — T is ﬁ —ism.

(iv) If Ty is a;— averaged and T is a,— is averaged, where a1, a, € (0, 1), then the composite T T is — averaged, where
ax=qq)+a —aa;.

Lemma 2.2 (Wang, F. H. & Xu., H. K., 2010) Suppose C(A™'Q # ®. Let U = I — AA*(I - Pp)A, where 0 < 4 <
2/p(A*A), and p(A*A) is the spectral radius of the self-adjoint operator A*A.

(i) U is an averaged mapping; namely, U = (1 —8)I +BV, where 8 € (0, 1) is a constant and V : H; — H| is nonexpansive;
(ii) Fix(U) = A~ Q; consequently, Fix(PcU) = Fix(Pc) (N Fix(U) = Q=CnNA~'Q.

Lemma 2.3 (Geobel, K. & Kirk, W. A., 1990) Let H be a Hilbert space and let C be a nonempty closed convex subset
of H,let T : C — C is a nonexpansive mapping with Fix(T) # ®, Suppose that {x,} C C is such that x, — z and
X, — Tx, — 0. Then z € F(T).

Lemma 2.4 (Cui, H. H., Su, M. L. & Wang, F. H., 2013) Suppose A : Hi — H, be a bounded linear operator, and
T : H, — H, is an oriented operator, Let V; = I — AA*(I — T)A, where 0 < A < ﬁ. If A" (Fix(T)) # @, then

2 - AP

2 2
IVax —zII” < flx—zll” -
AIAIP

2
IVax — x|

where z € A™'(Fix(T)) and x € H,.
Lemma 2.5 (Mainge, P. E. & Maruster, S. 2011) Let {a,} be a nonnegative real sequence satisfying
an+1 < (1 - Yn)an + 6n

Where {y,} c (0, 1), and {d,} is a sequences such that
(1) X2 ¥n = 005

(i) limsupn—eo0n/¥n < 0 0r T2 16,| < o0.

Then lim a, = 0.

n—oo
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3. NSTL Condition

Let C be a nonempty closed convex subset of a real Hilbert space H. Motivated by Nakajo, Shimoji and Takahashi (Taka-
hashi, W., 2009), we give the following definition: Let T}, be families of nonexpansive mappings of C into itself such that
Ny F(T,) # © ,where F(T,) is the set of all fixed points of T,,. Then 7, is said to be satisfy NSTL-condition if for each
bounded sequence {z,} C C,

1im 12,1 = Tozall = 0, )
implies that
h_>m ”Zn - TnZn” = 0 (6)

4. Main Results

Theorem 3.1 Suppose the SFP(1) is consistent and 0 < A’ < 4, < A” < %. Let C be a nonempty closed convex subset

of a real Hilbert space H;. Let f : C — C be a contraction with constant p € (0,1). Take an initial guess xo € H;
arbitrarily, and we define the sequence {x,} by

Xne1 = (1= an)Pc(I = 4,A°( = Po)A)xy + anf(xn),n 2 0, )

where

{a,} € (0, 1) such that

(ChHlim a, = 0;

(Cz)z‘,:o:() @, = 09;
(C3)ZZO=() |a'n+1 - a'nl < 0905
Then the sequence {x,} generated by algorithm(7) converges strongly to ¥ € Q, where X = Pq f(X).

Proof. The proof of the process will be divided into four steps. First we show that the sequence {x,} is bounded. For our
convenience, we take 7, = Pc(I—-2,A*(I-Pg)A). We assume (., F(T,) # ® and T, satisfy NSTL condition. By lemma
2.2, we know that (7, F(T,) is a solution of SFP(1).Now, we note that the condition 0 < A’ < 2, < 1" < ﬁ implies
that the operator Pc(f — A,A*(I — Pg)A) is averaged. Since I — Py is firmly nonexpansive mappings and so is % -averaged,
which is 1 -ism. Also observe that A*(I — Pp)A is W—ism so that 1,A*(I — Pp)A is m -ism. Further, from the fact that
I - ,A*(I - Pg)A is m averaged and Pc is § -averaged, by lemma 2.1, we may obtain that Pc(I — 1,A*(I — Pg)A) is
MUy, - averaged, where

21 . LJAIP T AIAIP 2+ Al

Hn=3577 27 2 4

€ (0,1),

This implies that T, = u,I + (1 — w,)S, where p,, = 2”+”A“2 € (0, 1) for some nonexpansive mappings S. Note that 7, is

also nonexpansive mappings, then for p € (", F(T,) € Q, we have T,,p = p, then

lXne1 = pll < (1 = @)l Twxn = pll + el f(xn = pll
< (I =a)llx, = pll + an(lf () = fI + 11f(p) = Pl
< (I = awllxn = pll + anpllx. = pll + lf(p) = pID
= (1 = (1 = p)an)lixa = pll + aull f(p) = pli

1
< max{|lx, = pll, 1Tpllf(p) -pli},

By induction

1
llxa = pll < maxt|lxo - pll; 1—_p||f(p) - plihn =0,
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So {x,} is bounded, we also have that {T,,x,} and { f(x,)} are bounded.
Next, we claim that

lim ”xn - Tnxn” = O’ (8)

Indeed, by the definition of the (7),that is x,+1 = (1 — @) Ty X, + @, f(xn), s0 lim ||x11 — Ty x|l = @l Twxn — f(x)ll, By the
condition (C1), we have lim ||x,+; — T,,x,|| = 0. This together with the NSTL condition, Thus,(8) is clearly established.

Next, we will show that

lim sup(x — x,, X — f(¥)) <0, 9

Indeed take a subquence {x,,} of {x,} such that

lim sup(% — x,,, ¥ — f(%)) = limsup(X — x,,, ¥ — f(X))

n—oo n—oo

We may assume that x,, — X. It follows from Lemma 2.3 and ||T,,x, — x,|| — O thatis X € Fix(T,) € Q. Hence from
Lemma 2.3, we obtain
limsup(¥ — x,,, ¥ — f(¥)) = (¥ - X, ¥ — f(X)) <0

Finally, we will show that x, — X in norm. It follows from Lemma 2.4, we obtain

2 - 4,lAl°

~12 ~112 2
”Tnxn - X|| < ”xn - x” - ”Tnxn - xn”
AP
2 - VAP
=112 I Ll L _ 2
< ”xn - x” - /1"||A||2 ”Tnxn xn”

Thus, we have

[260e1 = FIF = (1 = @)I(Tpx, = B) + @(f(x,) — DI

= (1 = @) Ty — P + @20 f(x0) = TP + 20,(1 = @y X TXy — %, f(x,) — %)

2 - ||AIP

2NIAI?

+ @zl f(xn) = X + 2a(1 = @y X Tyxy — %, f(x,) — )

(1 — )2 - 2" |IAIP)
VAP

+ a2l f(n) = F* + 2a0(1 = @ X Txy = %, f(x0) = F(D) + 2a(1 = @, X Tpx, — %, f(X) = %)

(1 — a,)*Q2 - 2"|IAIP)
VAP

+ @2l f(xn) = EF + 2pa,(1 = @)X, — FI* + 2au(1 = @)X Tpx, — %, f(X) = %)

(1 - a,)* @2 - 2" |IAIP)

< (1= @) [llx, — P - T %0 — ] ]

2 =12 2
< (1 —a,)’|lx, — %" = 1T, — Xl

2 =12 2
< (1 —a,)’llx, — %" = 1T, — ]l

= [1 - Qay — aj = 2pa(1 — a))lx, — &* - VAR 1T = Xl
+ @2l f(xn) = FI* + 2a(1 = @ X Tpx, — %, f(X) = %)
= (1 =yl = F + ¥ubps
That is
et = X2 < (1= ¥)lln = X + Y6 (10)
where
Yo = 2a, — @2 = 2pa,(1 — a,),
- (-a)*-"1AIP) 2 @l f o) =2l 2(1-a,) ~ ~ ~
Op = — Ran+a2—2pan(1-am) |V IATR 1T yx, — X,lI~ + 2—an—2p(1-ay) + 270,,72p(17r1,,)<T”x” - X, f(X) - %)
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It is easily seen from (C1),(C2),(8) and (9) that

Vo — 0, Zy,l = 00, limsup, 00, <0

n=1

Finally apply lemma 2.5 to (10), we conclude that ||x, — X|| — O. O

Corollary 3.1 (Deepho, J. & Kumam, P., 2015) Suppose the SFP(1.1) is consistent and 0 < A < ﬁ. Let C be a nonempty

closed convex subset of a real Hilbert space H;. Let f : C — C be a contraction with constant p € (0,, 1).Take an initial
guess xo € H) arbitrarily,and we define the sequence {x,} by

Xpe1 = (1 —ap)Pc - /lA*(I - PQ)A)xn + anf(x,,),n >0, (11)
where {«,} C (0, 1) such that
(Dlim a, = 0;

(2)2,010:0 @, = 00
(3)2;.,0:0 |an+1 - anl < 095
Then the sequence x, generated by algorithm(11) converges strongly to X, where X is the unique solution of the variational
inequality
{d=-HX,x-%)=0, xeQ.

Remarkl: Let 4, = A in algorithm(3.1), Thus it follows directly from Theorem 3.1 that the conclusion holds. The proof
is complete. It is worth noting that our method of proof is different from the method of (Deepho, J. & Kumam, P., 2015).
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