Zero-Sum Coefficient Derivations in Three Variables of Triangular Algebras


  •  Youngsoo Kim    
  •  Byunghoon Lee    

Abstract

Under mild assumptions Benkovi\v{c} showed that an $f$-derivation of a triangular algebra is a derivation when the sum of the coefficients of the multilinear polynomial $f$ is nonzero. We investigate the structure of $f$-derivations of triangular algebras when $f$ is of degree 3 and the coefficient sum is zero. The zero-sum coeffient derivations include Lie derivations (degree 2) and Lie triple derivations (degree 3), which have been previously shown to be not necessarily derivations but in standard form, i.e., the sum of a derivation and a central map. In this paper, we present sufficient conditions on the coefficients of $f$ to ensure that any $f$-derivations are derivations or are in standard form.



This work is licensed under a Creative Commons Attribution 4.0 License.