Semigroup Methods for the M/G/1 Queueing Model with Working Vacation and Vacation Interruption
- Ehmet Kasim
Abstract
By using the strong continuous semigroup theory of linear operators we prove that the M/G/1 queueing model with working vacation and vacation interruption has a unique positive time dependent solution which satisfies probability conditions. When the both service completion rate in a working vacation period and in a regular busy period are constant, by investigating the spectral properties of an operator corresponding to the model we obtain that the time-dependent solution of the model strongly converges to its steady-state solution.- Full Text: PDF
- DOI:10.5539/jmr.v8n5p56
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org