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Abstract

By using the strong continuous semigroup theory of linear operators we prove that the M/G/1 queueing model with
working vacation and vacation interruption has a unique positive time-dependent solution which satisfies probability
conditions. When the both service completion rate in a working vacation period and in a regular busy period are constant,
by investigating the spectral properties of an operator corresponding to the model we obtain that the time-dependent
solution of the model strongly converges to its steady-state solution.

Keywords: M/G/1 queueing model with working vacation and vacation interruption, Co— semigroup, dispersive operator,
resolvent set, eigenvalue

1. Introduction

According to (Zhang & Hou, 2010), the M/G/1 queueing system with working vacation and vacation interruption can be
described by the following system of partial differential equations:

d , (t) 00 00
pz(; =—/1P0,0(f)+f /Jo(x)Pl,o(x,f)dx+f p1(x)p1.1(x, t)dx,
0 0

0 N3 0 t
PLCED | PUED (a4 6+ polprot, 0,

t ox
a n 9t a n 7t
P gﬁx ), 9P ;ff )[04 04 1006 ) + APt 1), Vi > 2, (1.1)
0 x,1) 0 x,t
pLitet) Ol _ e,

ot ox
Opna1(x, 1)  Opna(x,1)
P e P S = A 1P () + A (), Y 22,

with boundary conditions:

P10(0,0) = Apop(?),
Pno(0,0)=0, VYn>2,

Pn1(0,0) =0 f Puo(x, dx + f Ho(X)Pus1,0(x, H)dx (1.2)
0 0

+f (X)) Ppsra(x, Ddx, Yo > 1,
0

and initial condition:

P00(0) =1, p01(0) = 0, ppo(x,0) = pp1(x,0) =0, VYm=1. (1.3)
Where, (x, ) € [0, 00) X [0, 00); poo(f) represents the probability that there is no customer in the system and the server
is in a working vacation period at time #; p,o(x,#)dx (n > 1) is the probability that at time ¢ the server is in a working
vacation period and there are n customers in the system with elapsed service time of the customer undergoing service
lying in (x, x + dx]; pn.1(x,)dx (n > 1) is the probability that at time ¢ the server is in a regular busy period and there are
n customers in the system with elapsed service time of the customer undergoing service lying in (x, x + dx]; A is the mean
arrival rate of customers; 6 is the vacation duration rate of the server; wy(x) is the service rate of the server while the server
is in a working vacation period and satisfies

Ho(x) 20, f Ho(x)dx = 0.
0
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w1 (x) is the service rate of the server while the server is in a regular busy period and satisfying

Hi(x) =0, fo 1 (x)dx = oo,

Queuing situations in which the idle server may take vacations encounter in computer, communication and manufacturing
systems, etc. In a classical vacation queue, a server may completely stop the service or do some additional work during
a vacation. Proposing various vacation policies provides more flexibility for optimal design and operation control of
the system. Therefore, many researchers studied such queueing system, see (Doshi, 1986; Takagi, 1990; Madan, 1992;
Gupur, 2002; Gupur, 2010; Gupur & Guo, 2002; Lu & Gupur, 2010), for instance.

In many real life congestion situations, the server can be utilized for ancillary work and a different rate during the vacation
period. Such a queueing situation is called queue with working vacation. (Servi & Finn, 2002) first studied the M/M/1
queueing system with multiple working vacation and obtained the transform formulae for the distribution of the number
of customers in the system and the sojourn time in a steady state. Since then, Queueing models with working vacation
have been studied by several researchers , see (Jain & Agrawal, 2007; Kim, Choi & Chae, 2003; Li, Tian, & Ma, 2007).
Moreover, (Wu & Takagi, 2006) extended Servi and Finn’s (Servi & Finn, 2002) M/M/1 queueing system to an M/G/1
queueing system with multiple working vacation, where the service times during regular service period and working
vacation period. (Zhang & Hou, 2010) considered the M/G/1 queueing system with working vacation and vacation
interruption where the server enters into vacations when there are no customers and it can take service at a lower rate
during the vacation period. If there are customers in the system at the instant of a service completion during the vacation
period, the server will come back to the normal working level no matter whether or not the vacation has ended. otherwise,
it continues the vacation. Firstly, by using supplementary variable technique they established the above model and gave
the Laplace-Stieltjes transform of the stationary waiting time. Then, they obtain the queue length distribution and service
status at an arbitrary epoch in steady state condition under following hypothesis:

llgg Poo(t) = poo. tlgg Pno(X, 1) = puo(x), tlgpo P, 1) = ppi(x), n=1

In addition, they also perform some numerical examples to study the effect of various parameters on the system’s charac-
teristics. By reading the paper we have found that the above hypothesis implies the following two hypotheses:

Hypothesis 1 The model has a unique time-dependent solution.
Hypothesis 2 The time-dependent solution converges to its steady-state solution.

So far, any results about this model have not been found in the literature. In this paper, we do dynamic analysis for
the queueing model by using the idea of (Gupur, Li, & Zhu, 2001), that is, we investigate above two hypotheses. First
of all, we convert the model into an abstract Cauchy problem by choosing a suitable Banach space as a state space
and introducing an operator corresponding to the model and its domain. By using the Hille-Yosida theorem and Phillips
theorem as well as Fattorini theorem we prove that the model has a unique positive time-dependent solutions and therefore
we obtain that the Hypothesis 1 is hold. Next, when the both service rate in a working vacation period and service rate
in a regular busy period are constant, we study the asymptotic behavior of its time-dependent solution, i.e., we study the
Hypothesis 2. Firstly, we determine the expression of the adjoint operator of the operator corresponding to the model and
deduce the resolvent set of the operator. Then, we verify that O is eigenvalue of the underlying operator and its adjoint
operator with geometric multiplicity one. Thus, by using Theorem 14 in (Gupur, Li, & Zhu, 2001) we obtain that the
time-dependent solution of the model strongly converges to its steady-state solution.

For simplicity, we introduce some notations as follows:

100 0 06 00
0000 00 6 0
=10 0 0 0 =10 0 0 ¢
0 0 px 0 0 0 w@ 0 0
0 0 0 ux) 0 0 0 0
I3=(0 o 0

Take a state space as follows:

X = {(Po,pl)}l’o € Y1, p1 € Yo, ll(po, pDIl = lIpolly, + lIpilly, < 00},
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n=1

pall = D Ipnalios) < oo}.
n=1

It is obvious that X is a Banach space. Now we define operators and their domain as follows.

Y, :{poeRxLl[O,oo)x~--

1poll = pool + D Ipnollipoes < oo},

g ={p1 € L'[0,00) x L'[0,00) - --

Poo ) (P1.1(x) -1 0 0 0 P00 -4 0 0 0 p11(x)
Pro@ | P21 0 - 0 0 —lpo®| |0 =& 0 0 -flpi®
Al P20 | [Pz =[| O O L0 || p2o® .10 0 —£ 0 lpu@l||,
P30 | [ Pa1(x) 0 0 0 —4% ..ffpso(x) 0 0 0 -—£ llpni(®

% € LI[0,e0), 2t € L'[0, 00), puo) and pyi ()
D(A) = {(po, p1) € X| (n > 1) are absolutely continuous and py(0) = I'j po;
p1(0) = fooo Topo dx + fow T3po dx + fo‘” L4p1 dx

D00 P1,1(%) 0 0 0 O D00 D 0 0 0 -
pro| [p2a@|| 0 Dy 0 0 o flpo@l | A Dy 00 [T
Ul p2o®| |pza®|f=|[0 4 Do 0 po®| [0 4 Dy 0 - L], pw=x
pao@ | ||| [0 0 2 Dy ||| 0 0 a1 D pal
here
Dy=-(A+60+u(), Dy =—A+m).
Poo ) (Pri(x) o Hox)pro) dx + [ u(x)p11(x) dx) (O
Pro(X) | [ p2.1(x) 0 0

P20 > P31 () || = 0 Joll, DE) =X

Then the above system of equations (1.1)-(1.3) can be written as an abstract Cauchy problem in Banach space X.

d(m&[:')m =(A+U+E)po, p1)@®), te(0,00),
1) (0

1.4
(po, p1)(0) =01, |0 (1)

2. Well-posedness of the System (1.4)

In this section, in order to obtain well-posedness of the system (1.4), we first need to prove that A + U + E generates a
positive contraction Cy— semigroup 7(f) on X.
Theorem 2.1 If uy(x) and p11(x) are measurable functions and satisfy fig = sup po(x) < oo and iy = sup p(x) < oo,

x€[0,00) x€[0,00)
then A + U + E generates a positive contraction Co— semigroup T (t).

A detailed proof of the Theorem 2.1 can be found in the Appendix. It is not difficult to verify that X*, the dual space of X,
is as follows.
qger, q”l‘eY;, }

X = *, i % % * *
{(‘Io WD gy, 4O = suptligylly:. g lly:)
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here
45(%) = (q4.0- 91 0(%)s 45 5 (X)s @3 o(X), - -+,
Y7 =149

Y; = {QT

It is obvious that X* is a Banach space. If we take a set S in X as

lllgplll = sup Iqaol,Sli}flqul,ollm[o,m) <oo [°
nz

lllgylll = SuI])”qZJ”L‘X‘[O,oo) <o
nz

CIT(-X) = (QS,I,CIT,I(X), 61;,1()6)’ q;,l(x)s o ) }

S ={(po. 1) € X|poo = 0, Puo(x) 2 0, pui(x) 20, Yn > 1, x€[0,00)}.

Then § is cone in X. for (pg, p1) € D(A) N S, we take

—_
—_ —

(g0 47) = ll(po, POl € X,

[}

For such (pg, p}) € X*, by using the boundary condition we have

((A+ U + E)(po, p1), (g5, 47)) = I(po, pOl {—/lpo,o +f0 Ho(x)p1o(x)dx +fo ,ul(x)pl,l(x)dx}

00 d
+f ||<po,p1)||{— P ;"’(x) —(/1+9+/lo(x))P1,0(x)} dx
0 X

oo 00 d )
#3710 o= 0+ o 00paa) + Apsa)
0 X

n=2 d
o0 d
+ f (o, PO {— P ;I(x) ~Q +#1(x))p1,1(x)}dx
0 X
- « dpn,l(x)
+ Z [Ipo, pOII§ — y — A+ u(x)ppa1(x) + App-11(x)
n=2 0 X

00

=||(l?0»191)||{—/1,4’?0,0""f0 ,Uo(x)Pl,o(x)dx""fo 1 (x)p11(x)dx

-2, fo dpao(¥) = ). fo (A+ 0+ po(x)po(dx+ 1) fo Pro(x)dx
n=1 n=1 n=1
-2 [ ama - [ @ m@npacod s D) [ pn,l(x>dx}

n=1
00

=||(Po»l’1)||{—/lpo,o+f0 ,Uo(x)Pl,o(x)derj; 1 (x)p11(x)dx

DIHCED W e
n=1

n=1

W NOEDY fo m <x>pn,1(x>dx}
n=1

n=1
[ee]

=I|(po,p1)ll{—/1po,o+j; llO(x)Pl,O(x)dx+f 1 ()p11(x)dx
0

tapa= Y, [ @+ uCoproCods
n=1 0

+Z1 fo u1<x>pn+1,l(x)dx+ez_; fo Puo(x)dx
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+Zf(; ﬂo(x)l?nn,o(x)dX—Zﬁ #1(X)Pn,1(x)dx}
n=1 n=1

=0

which shows that A + U + E is a conservative operator. Since the initial value (po, p1)(0)) € D(A%) N S, by using the
Fattorini theorem (Fattorini, 1983) we obtain the following result. see (Gupur, Li, & Zhu, 2001) for detail proof.

Theorem 2.2 T(t) is isometric for the initial value of the system (1.4), that is,

IT(©)(po, PO = [I(po, p1)O)II, £ € [0, c0). 2.1)

From Theorem 2.1 and Theorem 2.2 we obtain well-posedness of the system (1.4).

Theorem 2.3 If uo(x) and p;(x) are satisfy pg = sup po(x) < co and uy = sup u(x) < oo, then the system (1.4) has a
x€[0,00) x€[0,00)
unique positive time-dependent solution (pg, p1)(x, t) satisfying

(P, pOCDII =1, V1 € [0, 00).

Proof. Since (pg, p1)(0) € D(A%?) N S, From Theorem 2.1 and (Gupur, Li, & Zhu, 2001) we know that the system (1.4)
has a unique positive time-dependent solution (pg, p1)(x, f) which can be expressed as

(po, p(x, 1) = T(1)(po, p1)(0), 1 € [0, ).

From which together with Theorem 2.2 (i.e., (2.1)) we derive

l(po. PG, DIl = IT (@)(po> PO = [I(po, PO = 1, t € [0, ). (2.2)

(2.2) just reflects the physical meaning of (pg, p1)(x, ).
3. Asymptotic Behavior of the Time-Dependent Solution of the System (1.4) when 1o(x) = uo and u(x) = g
Lemma 3.1 (A + U + E)*, the adjoint operator of A + U + E, is as follows.

A+U+E)(qgq) =(L+N+R+I)gq))s
(q9-97) DA+ U + E),

where

, 0 £ —(A+6+u) 0 N iED)
Lgp. 41X = 0 0 L —Q+0+p0) |||
&= @+ 0 0 S\ (41
0 L=+ ) 0 |45
0 0 4 Q) ||as, @]
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000 0 Go ) (0 2 0 @0
w 0.0 2 0 -Ngj,@| [0 0 0 --lqio(0)
NGy aD®={lo 0 0 2 G |*]o 0 0 45,00 |
0400 q;,(x)
0 0 a4 0 qz’l(x)
000 2 ;||
0 00 --\( 4 ) (0 0 00 q;,(0)
Ho 0 0 - f1gio®] JO 0 0 0 75, (0)
Righ gD =[[0 0 0 DOm0 0 0 0 AOIN
0 00 4500 |0 wmo 0 0 7,(0)
0 0 0 0 g;,(0)
m 0 0 0 ;,(0)
0 m 0 0 O
0 0 4 0 4;,(0)
00 0 --\(q),0 )
000 —||g | 1 0 oo
Ta@awm=|0 ¢ 0 |l [0 o o ||ae®
’ X) = 3,1 ) M ,
do- 41 00 o - 4, (0) 0 0O 3,(0)
dg5,,(%) dq},(x) .
D((A+U+E>*>={<qa,q7)ex* —de— and == exist and }

Gho() = ) () =, n>1
here a in D((A + U + E)*) is a constant which is irrelevant to n.
The proof is easy computaion, and we omit the detail proof.

Lemma 3.2
Rey +A+60+uy >0, Rey+ A1+ u; >0,
A Aly+A+u|
sup { br+A” Rey+ e (y+ A1 °
yeC Ao + A6 + 20 + Pl
[y+Ally+A+6+p0| [y+Ally+A+0+uolly+A+u | [y+A+6+uolIRey+A+u; | Rey+A+6+uy°

AO+po)ly+A+m | + Pl 1
[y+A+6+pol(Rey+A+u)(ly+A+pil-p1) ~ Rey+A+6+uo

belongs to the resolvent set of (A + U + E)*, Especially, all points on the imaginary axis except for zero belong to the

resolvent set of (A+ U + E)  and A+ U + E.

Proof. For any given (y;, y]) € X* we consider the equation [yl — (£ + R + J)](g;,q7) = (5, ¥})- that is,

(v + Dqp0 = Yoo

0 - (y + A+ 0+ o)q o(x) — ogo o — 047 1(0) — v, (%),
dq:,o(x) * * * *
T (y + A+ 0+ uo)q, o(x) — pogq,,_1 1(0) — 0g,, ,(0) =y, o(x), n=2,
dey (%) . .
e (v + A+ gy 1 () — pgo o = Y11 (%),
dg,, (%) . .
dx = (7"'/l+ﬂl)qn,1(x)_,ulqn_1,1(0)_yn,l(x), nx2,

@ 0(®) = ¢, (®)=a, nx1
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By solving (3.1)-(3.5) we have

* 1 *
900 =——73Y00° 3.7)

y+4
"X
LIT,O(X) =a’1fe(y+/l+a+uo)x _ e(7+/1+9+ﬂ0)xf [#0‘18,0 + QQT,I(O)] e~y A+O+O)T 0
0
X
_ e(y+/l+€+y0)x f yT,O(T) e—(y+/l+9+;to)‘rd.[.’ (38)
0
X
q:,o(x) :a;xle(y+/1+9+,u0)x _ e(y+/1+9+,uo)xf [/JOQZ—I,I(O) + 961:,1(0)] e*()’+/l+9+/10)rd7_
0
X
- e()’+/1+0+HO)Xf y;kl,O(T) e—()’+/l+€+/10)1'd7.’ nz 2’ (3.9)
0
X
C]T,l(x) :b>1ke(7+/l+y1)x _ e(7+/l+y1)x f ﬂlqa() e—(7+/l+lll)‘rdT
0
X
_ e(7+/l+m)xf yil(‘r)e_(”““”’dr, (3.10)
0
X
gy (x) =bye AT _ plrtAux f g, 1(0) e VT gr
0
X
- e(YMWI)Xf Y1 (T) e YTITgr n>2, (.11)
0

Multiplying the both side of (3.8), (3.9) by e-+4+0+#0)x the both side of (3.10), (3.11) by e~*4*#* and taking the limit
x — oo as well as using (3.6) it gives

a; = fo ) |1odig + 05 1(0)] 0010 4 fo ) Vi () e 0T g, (3.12)
a = fo ) |1od;_1 1 (0) + 6], (0)] e OO0 g 4 fo ) Vio(r) e YOGy > 2, (3.13)
by = fomulqao e T T 4 Lm ¥ (1) e T (3.14)
b = fo ) gy 1(0) e OFAHITGT 4 fo ) Yo (@) 0T > 2, (3.15)

By inserting (3.12)-(3.15) into (3.8)-(3.11) we deduce (without lose of generality assume Rey+A+6+uo > 0, Rey+A+u; >
0)

G0 =g (Moo * 041, (O)] + €0t f i@ g, (3.16)
e :m[ﬂoqz‘l’l(o) + Gq;l(O)] T O f Ty @G w0 (37)
4, (%) =ﬁqi‘m + gt fx ) ¥ (e 0T g, (3.18)
g1 () =ﬁq§;_l,,(0) + Y fx ) yi (e YT > 2, (3.19)

By using (3.18), (3.19) repeatedly we obtain that, by induction,

k k=1 oo
* M1 * M1 . B
O e K o B L

k-2 o0

Hi (y+A+ )xf * —(y+ AT

+(— eVt }’21(7')6’ Y HTdr 4+ ...
Y+ A+ ) o 7

M1 (y+A+p1)x foo * —(y+A+u)T
+— Vie1(De Vit
Y+ A+ o M

+ rHAHY f Vi (e T k> 1, (3.20)
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From (3.20) and (3.7) we estimate that

k k-1
1 H H
gz 4 lz10,00) < ( ) ool + ( Iy] 120,00
R0 = 2+ A+ pal) P00 Rey + A+ \ly + A+ LT,
1 u k-2
1 *
+ ®[0.00) + **
Rey + 1+ (|y+/l+,u1|) 2.1 llevro.
1 H1

Vi1 1llzor0.00) + Ve 1 1270.00)

1
+ —
Rey+ A+ ly + A1+l Rey + 1+ 1y

1 u k 1 k=1 u j
1 1
+ 1G5 )l
W+M(W+A+MJ Rw+ﬂ+ulsz+A+un) 0.7

=0
| ! ( s )"+ [y + A+ gl
ly + A \ly + 4+l Rey + A+ pu)(ly + A+ u| — pr)
ly + 4+ il mo N
- o> YD
Rey + A+ u))(ly + A+t —up) \ly + 2+l
<{ M ( M1 )k_1+ ly + 1+ |
Ty + ARey + A+ pup) \ly + 1+ ] Rey + A+ u)(y + A+ ui| — )
k—1
ly + 4+ ] ( M1 ) } .
- e YU, k> 1. (3.21)
Rey + A+ u)(y + A+l —p) \ly + 1+ 0>

Note that the following inequality holds.
y+Alzly+A+ml-m

which implies

M ( M )k_] 3 ly + A+ ] ( i )k_1
ly + ARey + A+ up) \ly + 1+l Rey + A+ )y + A+l = p) \ly + A+l

k k
< M1 ( M1 )_ ly + 4+ ( M1 )
Ty + ARey + A+ ) \ly + 2+ Rey + A+ u)(ly + A+ p| — ) \ly + 1+ |

From which together with (3.21) it follows that

k-1
sup llg;.,llz=10 <nm{ i ( 1 ) . by + A+ ]
o1kl [0,00) = 2o ly + JRey + A+ ) \ly + 1+ Rey + A+ u)(ly + 1+ w| —
) TTEY T bJN@*fm
(Rey + A+ pn)(ly + A+l = \ly + A+ (N
ly + A+ ] ..
Lo 0% 7 a2

<
Rey + A+ pu)(ly + A+ pul — )
Substituting (3.20) into (3.17) we conclude similarly that

k-1
* Mo M1
147 oll-100 <{ ( )
[y + A+ 0+ olly + A \ly + A+

N 0+ po)ly + 1+ |
ly + A+ 0+ pol(Rey + A+ u)(ly + A+ py| — py)

N Ho ( H )k_z
ly + 1+ 6+ pol(Rey + A+ p)(ly + A+ il — 1) \|ly + 4 + ]

k
0 ( iy )
ly + A+ 60+ wlly + A \y + 1+ 1y

.\ 0 ( w0 )k—l
ly + A+ 60+ polRey + A+ p)(ly + A+ py| — o) \ly + 2+ ]

1
T R s I 0 V1 *[0,00)> k>?2. 3.23
Rey+/l+9+,u0}”(y0’y1)“L [0,00) ( )
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We can easy to check that the following inequality holds.

Ho ( M )k_1
[y + A+ 60+ polly + Al \|ly + A + il

k-2
H : H Hil—f ( I )
ly + 14+ 60+uolRey + A+ up)(ly + A+l — ) \ly + 1+

9 k
HollY ( 1 )
|y+}+9+ 0” +l| ’)’+l+/.11

) p ( ” )k—l
ly + A+ 0+ polRey + A+ u)(ly + A+l — ) \ly + A+

k
< Ho ( H1 )
Tly+ A+ 0+ polly + A \ly + 1+l

+ Mo ( Hi )k_1
ly + A+ 6+ pol(Rey + A+ p)(ly + A+ il — 1) \ly + A + ]

9 k+1

+ 0 ( al ) >2
ly + A+ 60+ polRey + A+ un)(ly + A+l —p) \ly + A+l ) 7
From which together with (3.23) we know that

k-1
sup llg; ollz=0,00) < lim { Ho ( Ui )
[ ' n—eo Uy + A+ 6+ polly + A \ly + 1 + il

. 0+ po)ly + 4+ |
ly + A+ 60+ pol(Rey + A+ pup)(ly + A+ py| — py)

" Ho ( Hi )k_z
ly + A+ 60+ pol(Rey + A+ up)(ly + A+ pr| — ) \ly + A+

N 0 ( H )
ly + A+ 6+ polly + Al \y + 1+

. ) ( i )k—l
ly + A+ 6+ pol(Rey + A+ p))(ly + A+ py| — 1) \ly + A+ |

1 ko
ts——————— 5 1000
Re““gw}n(yo V)ll1000)
:{ (9+ﬂ0)|7+/1+p||

Iy + A+ 6 + pol(Rey + A+ p)(ly + A+ | = p1)
1

i Rey+ 1+ 6+ o
Combining (3.7), (3.16), (3.22) with (3.24) we estimate

}||(yz;,y’;)||m,m).

(75> g7)Il = max {Ipo,ol, sup l1g;, ollz=10.c0) SUP I}, ; ||L°°[O,oo)}
n>1 n>1

ly + A+ |

ly + A" Rey + A+ )y + A+ pi| = 1)’

Ho N Ouo
ly+Aly+A+0+uol ly+Aly+a+0+polly + 4+ u]

0 1

+ +

ly+A+6+uo|lRey + A +u;l Rey+A+0+pu

0+ po)ly + A+

ly + A+ 0+ polRey + A+ p)(ly + A+ il — 1)

}u(yg,y’;)nmo,m).

=max{

+—
Rey+ 1+ 6+ o
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(3.25) shows that

_ ly + 4+l
T - L-R—-T) 1||5max{ : ,
7 y+ A Rey + A+ )y + A+l —
Ho + O
ly+Ally+A+0+puol ly+Aly+A+0+puolly + A+ pil
0 1
+ +
ly+A+60+pulRey+ A+l Rey+A+6+pu
O + po)ly + A+ |
ly + A+ 0+ pol(Rey + A+ pp)(ly + A+ | — )
1
. — 3.26
Rey+/1+0+uo} ( )

Together with the fact || N|| = A we conclude that, when

Iyl = L-R=9)'NIl <yl = L=R =) "IN
ax{ A Aly + A+
B by + A" Rey + A+ p)(ly + A+ | =y
Ao N Abu
ly+Aly+A+0+pol ly+Aly+a+0+polly+ A+l
. 20 . Pl
ly + A+ 60+ pollRey + A+ u;l  Rey+A+6+pu
A0+ po)ly + 1+ |
ly + 4+ 0+ pol(Rey + A+ u)(ly + A+ p| = 1)

A
+ —
Rey + 1+ 0+,u0}
<1, (3.27)

[(I - (yI — L-R-J)'N]! exists and is bounded. By noting
YI-L-R-F-N"'=[U-(I-L-R-T)'NI'yI - L-R-)"

we know that (yI — L —-R -9 — N)~! exists and is bounded when (3.27) holds. that is to say, (29) belongs to the resolvent
set of (A + U + E)*(see Gupur, Li, & Zhu, 2001). In particular, if y = iw, w € R\{0}, i2 = —1, then all the v naturally
belong to (3.27). In fact, by simple calculation, we have

A A

Z-1,

Vo? + (2 4
Vw? + (1 + py)?
A w” + (1 + ) <1

R A O

Ao N A,
Vo + 22 + A+ 0+ 10> Vo + 2 Jw? + (A + 60+ o) Jw? + (A + )2
A6 A
+ + <
VO + A+ 0+ p)2(A+py)  A+0+10
A0 + o) \a? + (A + py)? Pl

+ <
V@2 + (A4 0+ o)A+ u)(Vw? + (A +pu)? —py) - A0+ 40

The above inequalities show that the resolvent set of (A + U + E)* contain all points on the imaginary axis except zero so
as(A+U+E). O
Lemma 3.3 If A < uy, then 0 is an eigenvalue of A + U + E with geometric multiplicity one.
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Proof. We consider the equation (A + U + E)(po, p1) = 0, which is equivalent to

/lpo,o=/10f P1,o(x)dx+ﬂ1f p11(x)dx,
0 0

dpio(x)
pld—‘) = —(A+ 0+ uo)p1o(x),
X
dpno(x)
P = (A4 0+ H0)Puo(0) + APaoro(0), n 2,
dpy.1(x)
L — (L),
X
dpn.(x)
b B = (A )P (D) + Apara (), 22,

P1,0(0) = Apoo,
Pno(0)=0, n>2,

pn,l(o) = gf pn,O(x)dx + Mo f pn+1,0(x)dx
0 0

+/11f Pnr11(X)dx, n>1,
0

(3.28)
(3.29)
(3.30)
(3.31)

(3.32)

(3.33)
(3.34)

(3.35)

It is difficult to determine the expression of all p, and p,; for n > 1 and to verify (py, p1) € D(A + U + E). Hence, we

use an indirect method. We define the probability generating functions for |z] < 1

Pox,2) = ) puo®)?"s Pi(x.2) = ) pua(x)"
n=1

n=1

then Theorem 2.3 ensures that Py(x, z) and P;(x, z) are well-defined. (3.29) and (3.30) gives

9 2 pno(0)Z"

n=1 N n N n
- =(A+ 0 + o) ; Dno(0)Z" + A4 ; DPn-1,0(X)Z

=

OPy(x,
% = —(A+ 6 + uo)Po(x,z) + AzPo(x,2)

= (Az—=A1-0—pup)Py(x,2)
=
Py(x, 2) = Po(0, z)e e A0Hox,

(3.31) and (3.32) imply

0 Z Pn,l(x)Z"

n=1 N n N n
- —(A+pu) nZ:; DPn1(X)Z" + 4 HZ:; DPn-1,1(X)zZ

-

OP(x,
ILD — ()P, 2) 4 AP ()

=z—A—pu)Pi(x,2)
N

Pi(x,2) = Py(0, z)e 0%,
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From (3.33)-(3.35) and (3.28), we deduce

Py(0,2) = Azpo,

P1(0,2) = ) Pi(0)"
n=1

=6 f D Pro()7"dx + g f D Prero@dx + ) f Prt (02 dx
0 n=1 0 n=1 n=1 0
00 00 1 00
= Gf Po(x,z)dx + Mof Z[ Z Pro(0)Z" = pro(x)z
0 0 n=1

00 1 0
+ i f —[ Z P ()" = pl,l(x)z]dx
0oz n=1

=0 f Po<x,z)dx+‘§ f Po(x,2)dx — o f Ppro(x)dx
0 0 0

1 [oe] [ee]
B[ P adx - f pri()dx
Z Jo 0

dx

-0 f Po(x, 2)dx + 22 f Po(x, 2)dx + 2L f P1(x, 2)dx — Apoo,
0 Z Jo Z Jo

By inserting (3.36), (3.37) and (3.38) into (3.39), we determine

Pi(0,2) =6 f Po(0, 2)et -0 4 KO f Po(0, )<A= H0)v
0 z Jo

+ K P1(0, 2)e A gy — APoo
Z Jo

:gf /lzpo,oeuz_/l_e_”o)xdx-i-lﬂf ﬂzpo,oe(/lz_’l_e_”")xdx
0 < Jo

+ lﬂ P1 (0, Z)e(/lz_/l_ﬂl)xdx - /1]?0,0
Z Jo
0z Ho
=————Apogo+ —————A1
A0 PO e A P00
H1
——P1(0,2) -4
A=) 1(0,2) = Apoo
=3
Oztpo
Az—A—0-
P1(0,z) = —lz E—Apoo.
T )
By (3.40) and the L’Hospital rule we calculate
0z + o | 01z — A — 6 — po) — A0z + o)
A—A—0-py Az — A —0— o)’
lim P1(0, Z) = lim £ Ho /lp()’() = lim ( < 'uO) /lp()’()
=l =l 1 M1 il ml(dz = A=) + Az]
WAz = A—py) 22— A=)
(=0 — po) — A0 + po)
—0 — pp)? A+6
= ( Ho) Apop = %/{Pop < oo.
—u + A (0 + o)1 — )

Hi
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By combining (3.36), (3.37), (3.38) and (3.41), we have

Z Paof) = lim Po(x,2) = lim Py(0, 2)e 010"

n=1

= Apo Oe—(9+ﬂo)x

-

Z f Proddx = -

Z Pri(x) = lm} Pi(x,2) = lin} P1(0, ) A-Hx
- o

Po 0 < (3.42)

__ (40 o
(@ + po)(ur —
[
(A+6)4
Zf P = G ST poo < 0. (3.43)

n=1
(3.42) and (3.43) imply
ICpo, pOIl = llpoll + [Ip1]l < 0.
This shows that O is an eigenvalue of A + U + E. Moreover, by solving (3.29) - (3.31) we have

B n (Ax)n—k
n, ('x) =e (/l+g+/40)x ! (0) b n 2 1’
Pno /; Pko n—h!

n ( 1 x)n—k

= o)X
Pui(0) = €M) pO) s

n>1,
k=1 (

P1,0(0) = Apo,
Pno0) =0, n>2,

pn,1(0)=0f Pro(x)dx +,U0f Prr1,0(X)dx
0 0
+/11f Purr1(0dx, n=>1,
0

From the above, we know that the eigenvectors corresponding to zero span one dimensional linear space, that is to say,
the geometric multiplicity of O is one. O

From Theorem 2.3 and Lemma 3.2 we know that 0 is an eigenvalue of (A + U + E)*. Furthermore, we deduce the following
result.

Lemma 3.4 [f A < uy, then 0 is an eigenvalue of (A + U + E)* with geometric multiplicity one.

Since Theorem 2.3, Lemma 3.2, Lemma 3.3 and Lemma 3.4 are just the conditions of Theorem 14 in (Gupur, Li, & Zhu,
2001), we conclude the following result.

Theorem 1 If A < uy, then the time-dependent solution of the system (1.4) strongly converges to its steady-state solution,
that is,

lim [[(po, p1)C, 1) = B(po, PO = 0
here (po, p1)(x) is the eigenvector in Lemma 3.3 and B is decided by the eigenvector in Lemma 3.4 and initial value
(po, p1)(0).
4. Conclusion

In this paper, we do dynamic analysis for the M/G/1 queueing model with single working vacation and vacation interrup-
tion by using the functional analysis method. we prove the existence of a unique nonnegative time-dependent solution
of the model, and when the service completion rate are constant we obtain that the time-dependent solution of the model
strongly converges to its steady-state solution. These results confirmed all two hypotheses which stated in the introduction.
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In addition, from Theorem 3.1 we can prove the time-dependent queueing size at the departure point converges a positive
number, the time-dependent queueing length and the time-dependent waiting time also converges to the corresponding
steady-state queuing length and steady-state waiting time.

Our studies in this field, see (Kasim & Gupur, 2011) and (Gupur, 2011; Gupur, 2014) for instance, suggest that there are
infinitely many eigenvalues of A + U + E on the left half complex plane, that is to say, it is impossible that the time-
dependent solution of the system (1.4) exponentially converges to its steady-state solution. Of course, it needs to verify.
that is our next research work.
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Appendix

Proof of Theorem 2.1 The proof will be divided into four steps. Let us first prove (vl — A)~! exists and is bounded for
some y. For any given (yg, y1) € X, we consider the equation (yI — A)(po, p1) = (Yo, Y1), that is,

(y + Dpo,o = Yoo (A.D
dpn,j(x) .

S =Y+ 0,z 1 j=0.1, (A2)
P100) = Apoo,  pro(0) =0, n>2, (A.3)
Pn1(0) =6 f Pno(X)dx + f Ho(X)Pur10(x)dx + f H1(XO)Purr1(0)dx, n> 1. (A4)

0 0 0

By solving (A.1)-(A.2), we have

1
y+ 4

Dn,j(X) = ayje " + e’yxf ynj(Dedr, n>1, j=0,1, (A.6)
0

Poo = Yo, (A.S5)

(A.3)-(A.4) together with (A.5)-(A.6) we get that

A
= 0)=21 = , A7
a0 =p1,0(0) = Apoo y+/l}’o,o (A7)

an0 :pn,O(O) = 0, nz 2’ (AS)
a1 =p1,1(0)

ng Pl,o(x)dx+f ,UO(X)Pz,o(X)dXJrf H1(xX)p2,1(x)dx
0 0 0

00 X
=9f [alsoe_” + e‘”‘f yl,O(T)e”TdT]dx
0 0

+ f ,uo(x)[azyge_yx+e_7x f yz)o(T)edeT]dx
0 0

+f ,ul(x)[ag,le’”+e’”‘f yg,l(T)edeT]dx
0 0

9 00 X 00 X
=—ajo+0 f e f yio(me drdx + f Ho(x)e ™" f y2.0(7)e’ drdx
Y 0 0 0 0

+a2,1f yl(x)e_y"dx+f e_yxf ya.1(T)e’ drdx, (A9)
0 0 0
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an,1 =pn,1(0)
=9f Pn,o(x)dx+f ,Uo(x)Pnﬂ,o(x)derf H1(X)parr1(x)dx
0 0 0

=0 f [anyoe_7x+e_7x f yn,o(‘r)ewd‘r]dx
0 0

00 X
+ f Mo(x)[an+1,oe‘“+6‘” f yn+1,o(T)e”dT]dx
0 0

+ f un(X)[anH,]e’”H’” f yn+1,1(T)e”dT]dx
0 0

=0 f e f Yuo(T)e’ drdx + f Ho(x)e ™ f Yur10(7)e drdx
0 0 0 0

00 00 X
+ i1 f Hi(x)e " dx + f Hi(x)e™* f Yne11 (D) drdx, n>2.
0 0 0

If we set
1 - fomyl(x)e‘”dx 0 0
0 1 —fooo,ul(x)e‘”dx 0
C=|o 0 1 —fooo,ul(x)e‘”‘dx -
a=(a1,az1,a31, )",

then (A.9)-(A.10) give

gﬂh,o + 009 fom e‘zx foxyl,o(‘r)ewd‘rdx: fom uo(x)e‘z)‘ fox Yao(r)e’ drdx
0 fo e fo yao(m)e’ drdx + fo Ho(x)e™"* fo y3o(r)e’ drdx
Ca = 0 fo e fo y3o(m)e’ drdx + fo Ho(x)e ™~ fo Yao(r)e" drdx
0 fo e fo yao(r)e’ drdx + fo Ho(x)e™ "~ fo yso(r)e’ drdx

+ fooo Hi(x)e fox v, 1(r)e’ drdx
+ fooo Hi(x)e fox y31(r)e’ drdx
+ fooo Hi(x)e fox ya1(r)e’ drdx
+ fooo pi(x)e fox ys1(r)e’ drdx

It is easy to calculate the inverse of C as follows:

1 e dx ( foim (X)e ¥ dx)?  ( f(): pi(x)e™" dx)?

0 1 L ui(x)e " dx (fo 1(x)e™*dx)?
c'=|0 0 1 Jo mi (e dx ,

0 0 0 1

which together with (A.11) we obtain that

00

00 k 00 X
A0
ap) =———yoo + E f ,ul(x)e_yxdx) [9f e_”‘f Yir1,0(T)e’ drdx
Yy +4) ( 0 0 0o

k=0

+ f Ho(x)e " f Viro(DeT drdx + f i (x)e " f yk+2,]<r)e”drdx],
0 0 0 0

00 00 k . x
1 :Z( f ,ul(x)e‘”‘dx) [9 f e f Yirno(T)e drdx
k=0 WO 0 0

00 X 00 X
+ f po(x)e " f Verns10(D)e  drdx + f p(x)e " f yk+n+1,1<r)e”drdx], n>2.
0 0 0 0
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Now, from (A.5)-(A.6) and using the Fubini theorem we calculate (assume y > 0)

1pn 000 = f 1P (Ol
0

00 X
= f an e +e f yn,j(T)e7dr|dx
0 ' 0
00 00 X
< la f 7 dx + f e f [y j(Dle” ddx
0 0 0
1 * T * —-YX
= —la, ;| + Y j(T)E” e dxdr
Y 0 T

I 1 ,
= ;'an,ﬂ + ,;”yn,j”L'[O,oo)» j=0,1,

B

lpo, POI = llpoll + [l p1ll

= lpool + D, IPnolluioes + Y IPnilliioe)

n=1 n=1

1 I «
< =Ivool + = ) lynollzifo,.e0
- > Z; nollLi o)

1 < 1 ¢
+ = > lantl+ = > il
Y n=1 Y n=1

Combining (A.12) and (A.13) with the Fubini theorem we estimate

S el <=2y
nll =7 — —T1)0,0
o Yy +4)

[SSI) 00 k
+6 Z ( f #1(X)e”‘dX) f e f [Vkn0(T)le? drdx
=0 0

n=1 k

(o8] (58] 00 k 00 X
+ZZ( f /vtl(X)e‘”‘dX) fo H1(x)e™* fo [Yiens1,1 (D]’ drdx

n=1 k=0
A0

:3’(7’ +4)

(e

[yo,ol

n=1 k=0

(o)
2,
n=1 k=0

0

(o) 0 k . N
+ZZ(£ 'ul(X)e_de)fo Vktns11(D)le j; i (x)e” " dxdr

n=1 k=

0
S [
Yy + )

00

oo 00 k 0 00
+0 Z e dx [Visno(T)e’™ e dxdr
" 0 0 ' T

[o,ol

1
(o]
n=1 k=0

71

(o] k 00
Z( (e dx) [ 00e [ ienratoperasas
-0 0

k To'e} 00
+ HZ Z ( f m(x)e‘”‘dX) fo kno(Tle?™ fT e dxdt
o k 00 )
Z( Hi(x)e” de) f Vkens10(le’™ f Ho(x)e” dxdt
0 T

-0
o o koo .
+ ZZ( fo ll_le_wdx) fo [Vitnt1,0(7)le”™ j; fioe " dxdr

(A.14)
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0 k 00 00
+Z (f llle_yxdx) f |yk+n+1,1(7)|eny e Vdxdr
0 T

n=1 k=0
< ( ool ZZ(“ ‘) f Yeeno(DldT
+ £ OZZ(%) fo Veens1 0(DldT

nlkO

Y S0
o ok
1
+ZZ(—) [ brennaoae
=10\ 7Y 0
00 —\k o
10 0 S (7
<————yool + = Z (—) Z 1m0l {0,00)

k+1 oo

% i (/l] ) Z ||yn 0”LI[O ) T Z (,U] ) Z ||yn‘1||1‘1[0!00)

n=1

Z ol o.ee

Ho Y K1
+ = [ynollL10,00) + — 1n, 1111 10,00
Y~ M ,Z‘ " (0 Y~ M1 Zl ! [0

ool + Z nolzo.eo

A
Yy + )

[0,00)

By substituting the (A.15) into (A.14) we estimate (assume (; > uo + 6 and y > uy)

lGpo, poll <= |yoo| + Z 1Y ollz110.00

n=1
1 A6
= ool + Z nollz o

Y+
[o,oo)} + - Z 1y, 1 1121 [0,00)
Y n=1

2 —_— —_— (o)
v-+ Ay + A0 y—p+uo+6
[yo,0l — E [1Yn.0llL110,00)

Yo,
Yy + ) y(&y — 1)
— 0,00
i L [0.00)
<——{bool + ). nollsoes + Y Mntllsoeo
Y 1 n=1 n=1
1
=?|I(y, 2.

! exist for y > 17, and

(A.16) shows that (yI — A)
X = D), iyl -A)"|| <
y-Hr

(yI-A)":
In the following, we will prove that D(A) is dense in X. Since Y(po, p1) € X implies

ool + Z 1PaollLioss + Z 1Pty < o0

n=1
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It follows that, for any € > 0, there exists a positive integer K such that such that

(&9 (o)
D pnollzioes + D Ipailloe < €
n=K

n=K

‘Which shows that the set

Po(x) = (P00, P1,0(x), p2.0(%), -+, pr0(x),0,0,---),
p1(x) = (p1,1(x), p21(x), -+, pr1(x),0,0,---),

pio(X), pi1(x) € L'[0,00), i=1,2,--- K, ’
K is a finite positive integer.

L =1(po,p1)

is dense in X. If we set

Po(xX) = (P00, P1,0(X), p20(%), -+, pno(x),0,0,--+),
p1(x) = (p1,1(x), p21(x), -+, pn,1(%),0,0,---),

Z = {(po,pD) | Pio(x), pi1(x) € CF[0, 00), there exists ¢; > 0, d; >0 ,
such that p;o(x) =0, x € [0,¢;]; pi1(x) =0, x € [0,d,];
i=1,2,---,N.

then from (Adams, 1975) we know that Z is dense in L. Therefore, in order to prove that D(A) is dense in X, it is suffices
to prove Z C D(A). In fact, if Z € D(A), then X = L = Z = Z ¢ D(A) = D(A) c X implies X = D(A).

Take any (po, p1) € Z, there are a finite positive integer N and positive numbers ¢; > 0, d; > 0 such that, fori =1,2,---N

po(x) =(poo, P1,0(X), p2o(x), -+, pno(x),0,0,:-+), pio(x) =0, x € [0,c],
pl(x) :(pl,l(-x)’ pz,l(x)s Tt pN,l(-x)s 09 09 e )’ pi,l(-x) = O, X € [07 di]»

This implies p;o(x) =0, p;1(x) =0 for x € [0,2s] where 0 < 2s < min{co,c1,--- ,cn,do,di, - - dy}. Define

Poo (6 f prodx + [ po(x)pra(x)dx + [ m(x)pai(x)dx

P0.0 0o 00 00

0 0 [, pro@dx+ [} po(x)ps.1(x)dx + [} p1(x)ps.1(x)dx

o OO =1 o 110 7 pyero@dx + [ popnadx + [ (xpy (ddx ||
0 0
0 0

P00 1)
fio() 13,()
f20(0) 3,0

G 0 =|[ @ [ o]
oo || fo,
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here
MONEES x €[0,s),
fio(0) =1 —ui(x = 5)*(x = 25> x€[s5,25),  fyox) = pno(x),
Pio(x) x € [2s, 00).

B 5 £5,0)(1 = £)%dx

M] - 2s £
fs (x — 8)%(x — 25)%dx
" 2001 = 22 ug(x)d
we 2f0 O
Jo (= 92 = 25 p0(x)dx
:1(0)(] - f)z X € [O’ S)»
[0 ={vilx - 9)*(x =297 x€ls,25), [, (0) = pni),
pi1(x) X € [2s, 00).
1 A
e {f fH0o)a - SV (x)dx
[ (= 9)%(x = 2821 (x)dx Yo s
X 2s
+ f AR ORE f)zuo(xwx —Ouiy | (x = 5)°(x — 28) po(x)dx
0

X 2s
+ fo JAOICE %)de — Ou;_, (x — ) (x - 2s)2dx}, i=2,3---,N.

It is easy to verify that (fy, f;') € D(A). Moreover

N 0o N )
0.2 = GBS = D [ 1pasto) = Fio(ldx+ D [ paa = £, ol
n=1

n=2

% s X N 2s
= S 0 1—_2d f " _ 2 _2 2d
;folfn,o( I s) X+nZ=; ) || (x — $)*(x — 25)2dx
S s X N 25
s 01 = 2y2d f = - 25d
+;fo|f,,)l< =3 3 [ - 20

N s N SS N s N SS
= 700z + ul=—= + OIEE ul ==
;vm( )3 ;'”'30 ;m,l( )3 ;|v|30
-0, ass—0.

This means that D(A) is dense in X. From the above two steps and Hille-Yosida Theorem we conclude that A generates

a Cy— semigroup. see (Gupur, Li, & Zhu, 2001). Now, we verify that U and E are bounded linear operators. From the
definition of U and E we have, for (pg, p1) € X

U (o, poll < ) fo A+ 0+ to())pup(ldx + Y fo AP (0)ldx
n=1 n=2
[ s mepaix+ Y [ apnacoids
n=1 n=2

<QA+0+0) ) fo IPro(ldx + QA+ i) Y fo a1 (X)ldx

n=1 n=1

<max{24 + 0 + o, 22 + i }li(po, oI, (A.17)
IE(po. pol S,u_of IP1o(x)ldx +/~l_1f P11 (x)ldx
0 0
< max{uo, t1}li(po, poll- (A.18)

(A.17) and (A.18) show that U and E are bounded linear operators. It is easy to see that U and E are linear operators.
Hence, From the perturbation theory of Cyo—semigroup we get that A + U + E generates a Co— semigroup 7'(¢).
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Finally, we prove that A + U + E is dispersive operator. For (pg, p1) € D(A), we choose

[PojI" [p1OI" [p2,;(0)]" ) i=0,1
poj P 7 prix ) ’

¢i(x) = (

Where

if >0 i) if pui(x) > 0 ,
[pool* = {Po,o if  poo [ (O] = {P ) it p i N1, =01

0 if pop<0’ 0 if pj(x)<0’
The boundary condition on (pg, p1) € D(A) imply

> Pno 1" <Alpool,
n=1

D a1 sez f [pn,o<x>]+dx+2 f KOO [Prs1 0(X)] dx
n=1
+Z f )Pt (D] d

n=1

If we define V;; = {x € [0, 00)|p; j(x) > O} and W; ; = {x € [0, 00)|p;;(x) < O} fori > 1, j = 0,1, then we have

dx

fm dp; j(x) [Pi,j(x)]+d _f dp; j(x) [pij(0]* f dp; j(x) [pi (0]
——dx = ———dx+ —_—

0 dx  pijx) v, dx  pij(x) w, dx  pijx)

3 dpi j(x) [pij(OI" dp; j(x)

- _f; dx Dij(x) dx = j“/ dx dx

ij ij

dlpi; (01"
=f dez_[pu(o)r, i>1, j=0,1.
V., dx

ij

By using boundary condition on (py, p;) € D(A) and (A.19)-(A.21) for such (¢, ¢1), we derive

((A+ U + E)(po, p1), (o, $1))
[pool*

={—/1P0,0+ f Lo(X)pro(D)dx + f ,Ul(x)l?ll(x)dx}
0 0 P00

a dpio(x) [P1o(0]*
¥ fo { - 6+uo(x>>pl,o<x>}mdx

- 0 d n n *
2 [ a0 + Aot S

Pno(X)
* dpi1(x) [p1.1(0)]"
+j0‘ {— i —(/l+p1(x))p1,1(x)}mdx

o (" dpai(x) [pr1(O]"
+ HZ:; jo‘ { - (A + 1 (X)) pu(x) + ﬂpn—1,1(x)}mdx

=—/1[Po,o]++{ fo po(X)pro(dx + fo m(x)m,l(x)dx}[’;)(fj

dpn O(X) [pn O(x)
) Z f dx Pn, 0(x) dx = Z f (A1+6+ ﬂO(x))[pn O(X)] dx

n=1
Prol” f dpua@) [ I*
2 N
¥ Zf” )= ¢ Z i o &

‘Zf (A + p1(x)) pnl(x)]*dx+/12f Pue11(x )[p:ll((iz)]
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(0P () [’;f(’fj

—/1[190,0]++{ fo Lo(x)pro()dx + fo

DYDY [ @0 moetputoras
”Zf Pt 2000 +§][pnl<0>]+
pua) 2l
—Zf (ﬂ+m(x>)[pn1(x)rdx+42f P22 g,
P ()

< ~Alpool + f Ho(Ipro()T dx + f 1ol de 2 nol”
0 0 P00
“lpual” = ) [ 40+ ool ds
n=1
S +[Pno( )]
A3 | P dx +92 Ipuotol”
n=2 0
+Zf ﬂo(x)[Pn+1,0(X)]+dX+Zf 11(X)[pre1,1 (X)) dx
—Zf (ﬂ+u1(x>>[pn1(x)rdx+42f prraor 21O
nl(x)
-{ f Lo pLo(OT dx + f L @IpLa] dx}[” ool”
0 0 P00
- [ mtpaordx =) [ paaras
n=1
”i f Ipaergon 220 f @] dx
’ Pno(X) 0 '
—AZ[ [Pa1 ()] dx+AZf [Prti (] ””nl((’f)]
S(M_ 1) f po([p1o(x)]* dx
Po,o 0
+ ool f (D1 (O] dx
Po,o 0
<0.

In the above, we have used the following inequalities:

0 [pn /( ) f [pn,j(x)]+
n—1,j ————dx Pn- —d
fo" N T il Sl M ee)

Sf [pn-1j(0]Tdx, n>1, j=0,1.
0

(A.22) shows that A + U + E is a dispersive operator.

(A.22)

From the first step, the second step, the fourth step and Fillips theorem we obtained that A + U + E generates a pos-
itive contraction Cy— semigroup. By the uniqueness theorem of the semigroup it follows that this positive contraction

Cp—semigroup is just 7(¢).
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