Stepwise Global Error Control in an Explicit Runge-Kutta Method Using Local Extrapolation with High-Order Selective Quenching
- Justin Prentice
Abstract
Stepwise local error control using local extrapolation in Runge-Kutta methods is well-known. In this paper, we introduce an algorithm, designated RK$rv$Q$z,$ that is capable of controlling local and global errors in a stepwise manner. The algorithm utilizes three Runge-Kutta methods, of orders $r,v$ and $z$, with $r<v\ll z.$ Local error is controlled in the usual way using local extrapolation, whereas global error is controlled using a technique we have termed `quenching', which exploits the availability of a very high order solution and the use of a `safety factor', often present in local extrapolation methods. An example using RK34Q8 gives a clear indication of the effectiveness of the method.
- Full Text: PDF
- DOI:10.5539/jmr.v3n2p126
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org