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Abstract

Stepwise local error control using local extrapolation in Runge-Kutta methods is well-known. In this paper, we intro-
duce an algorithm, designated RKrvQz, that is capable of controlling local and global errors in a stepwise manner. The
algorithm utilizes three Runge-Kutta methods, of orders r, v and z, with r < v ! z. Local error is controlled in the usual
way using local extrapolation, whereas global error is controlled using a technique we have termed ‘quenching’, which
exploits the availability of a very high order solution and the use of a ‘safety factor’, often present in local extrapolation
methods. An example using RK34Q8 gives a clear indication of the effectiveness of the method.

Keywords: Runge-Kutta, Initial-value problem, Local error, Global error, Local extrapolation, Quenching

1. Introduction

Initial-value problems (IVPs) of the form

y′ = f (x, y)

x ∈
[
x0, x f

]
y (x0) = y0

are often solved numerically using a Runge-Kutta method. Usually, some form of local error control is implemented
in a step-by-step manner. However, local error control does not guarantee global error control. Global error could still
accumulate and become unacceptably large. Global error control, if implemented, requires a reintegration process -
solving the problem again using a smaller stepsize - and is not a stepwise process.

In this paper, we introduce an idea for achieving both local and global error control in a stepwise fashion, so that reinte-
gration is not needed. For simplicity, we restrict our considerations to a nonstiff scalar problem (as opposed to a system
of differential equations), for which the solution does not vary significantly in magnitude on

[
x0, x f

]
(this allows us to

consider absolute error control only, rather than relative error control).

We describe relevant concepts in Section 2; we show how global error can grow, despite local error control, in Section 3;
in Section 4 we discuss our approach for stepwise global error control; we describe this approach in algorithmic form in
Section 5; and in Section 6 we give a numerical example, as a demonstration of our algorithm.

2. Relevant Concepts, Terminology and Notation

In this section, we discuss concepts relevant to the rest of paper, including appropriate terminology and notation. The
reader is referred to Hairer et al (2000), Butcher (2003), Iserles (2009), Kincaid & Cheney (2002), LeVeque (2007), and
many references therein, for discussions of Runge-Kutta methods and local error control in such methods.

2.1 Runge-Kutta Methods

The most general definition of a Runge-Kutta (RK) method is

kp = f

(
xi + cphi,wi + hi

m∑
q=1

apqkq

)
p = 1, 2, ...,m

wi+1 = wi + hi

m∑
p=1

bpkp ≡ wi + hiF (xi,wi; hi) .
(1)

Such a method is said to have m stages (the kq). We note that if apq = 0 for all p � q, then the method is said to be
explicit; otherwise, it is known as an implicit RK method. We will restrict our considerations here to explicit methods.
The number of stages is related to the order r of the method, and for explicit methods we always have r � m. In the
second line of (1), we have implicitly defined the function F. The symbol w is used here and throughout to indicate the
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approximate numerical solution, whereas the symbol y will be used to denote the exact solution. As a refinement to our
notation, we will denote a Runge-Kutta method of order r as RKr and, for such a method, we write

wr
i+1 = wr

i + hiF
r (xi,w

r
i ; hi

)
. (2)

In a sense, RKr is defined by Fr, although it is understood that, for any r, there are, generally speaking, numerous possible
choices for Fr. The superscripts in (2) are labels, not exponents. The stepsize hi is given by

hi ≡ xi+1 − xi

and carries the subscript because it may vary from step to step.

2.2 Error Propagation

We define the global error in a numerical solution generated by RKr at xi+1 by

Δr
i+1 ≡ wr

i+1 − yi+1,

and the local error at xi+1 by
εr

i+1 ≡ [yi + hiF
r (xi, yi; hi)

] − yi+1. (3)

Note the use of the exact value yi in the bracketed term in (3). Again, the superscripts are labels.

We have previously shown (Prentice, 2009) that

Δr
i+1 = εr

i+1 + α
r
iΔ

r
i (4)

αr
i ≡ 1 + hiF

r
y (xi, ξi; hi) ,

where ξi ∈
(
yi, yi + Δ

r
i

)
. Equation (4) provides the relationship between local and global errors in RKr. We will assume

that Δ0 = 0 (i.e. the initial value is known exactly). We see that the global error at any node xi+1 is the sum of a local error
term and a term incorporating the global error at the previous node. For RKr, it is known that

εr
i+1 ∝ hr+1

i

Δr
i+1 ∝ hr.

On the RHS of these expressions, the superscripts are exponents, and h is a parameter representative of the stepsizes hi.

2.3 Local Error Control via Local Extrapolation

Consider two RK methods of order r and order v, i.e. RKr and RKv, with r < v. Let wr
i+1 denote the approximate solution

at xi+1 obtained with RKr, and similarly for wv
i+1. Let the local error at xi+1 in the RKr method be given by εr

i+1 = β
r
i+1hr+1

i ,
and similarly for εv

i+1 = β
v
i+1hv+1

i
(which defines the local error coefficients βr

i+1, β
v
i+1). Now, if wr

i ,w
v
i
= yi, which means

that Δr
i ,Δ

v
i
= 0, we have

wr
i+1 − wv

i+1 = yi+1 + Δ
r
i+1 −
(
yi+1 + Δ

v
i+1

)
= εr

i+1 + α
r
iΔ

r
i −
(
εv

i+1 + α
v
iΔ

v
i

)
= εr

i+1 − εv
i+1

= βr
i+1hr+1

i − βv
i+1hv+1

i

≈ βr
i+1hr+1

i

if hi is sufficiently small (since r < v). This gives

βr
i+1 ≈

wr
i+1 − wv

i+1

hr+1 . (5)

Once we have estimated the local error, we can perform error control. Assume that we require that the local error at each
step must be less than a user-defined tolerance δ. Moreover, assume that, using stepsize hi, we find∣∣∣εr

i+1

∣∣∣ = ∣∣∣βr
i+1hr+1

i

∣∣∣ > δ.
In other words, the magnitude of the local error εr

i+1 exceeds the desired tolerance. We remedy the situation by determining
a new stepsize h∗

i from ∣∣∣βr
i+1
(
h∗

i

)r+1
∣∣∣ = δ ⇒ h∗

i =

⎛⎜⎜⎜⎜⎜⎝ δ∣∣∣βr
i+1

∣∣∣
⎞⎟⎟⎟⎟⎟⎠

1
r+1

(6)
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and we repeat the RK computation with this new stepsize. This, of course, gives

xi+1 = xi + h∗
i .

This procedure is then carried out on the next step, and so on. If the estimated error does not exceed the tolerance, then
no stepsize adjustment is necessary, and we proceed to the next step.

Often, we introduce a so-called ‘safety factor’ σ, as in

h∗
i = σ

⎛⎜⎜⎜⎜⎜⎝ δ∣∣∣βr
i+1

∣∣∣
⎞⎟⎟⎟⎟⎟⎠

1
r+1

,

where σ < 1, so that the new stepsize is slightly smaller than that given by (6). This is an attempt to cater for the possibility
that βr

i+1 may have been underestimated, due to the assumptions made in deriving (5). The choice of the value of σ is
subjective, although a representative value is 0.85.

There is a very important point to be noted. Our procedure for determining βr
i+1 hinged on the requirement wr

i ,w
v
i
= yi.

However, we only have the exact solution at the initial point x0; at all subsequent nodes, the solution is approximate. How
do we meet the requirement wr

i ,w
v
i
= yi?

Since the higher-order solution wv
i

is available, we simply use wv
i

as input to generate both wr
i+1 (using RKr), and wv

i+1
(using RKv). In other words, we are assuming that wv

i
is accurate enough, relative to wr

i , to be regarded as the exact
value - an assumption entirely consistent with the assumption made in deriving (5). This means that we determine the
higher-order solution at each node, and this solution is used as input for both RK methods in computing solutions at the
next node. This form of local error control is known as local extrapolation.

3. The Problem

We assume that wv
i

is used to generate wr
i+1 and wv

i+1. Such value of wr
i+1 (and associated quantities) will be denoted wrv

i+1.
Hence, we have

Δrv
i+1 = βr

i+1hr+1
i + αrv

i Δ
v
i

= βr
i+1hr+1

i + Δv
i + hiF

rv
y Δ

v
i

Δv
i+1 = βv

i+1hv+1
i + αv

iΔ
v
i

= βv
i+1hv+1

i + Δv
i + hiF

v
yΔ

v
i .

Hence,

wrv
i+1 − wv

i+1 = βr
i+1hr+1

i + Δv
i + hiF

rv
y Δ

v
i −
(
βv

i+1hv+1
i + Δv

i + hiF
v
yΔ

v
i

)
= βr

i+1hr+1
i − βv

i+1hv+1
i +
(
Frv

y − Fv
y

)
hiΔ

v
i (7)

≈ βr
i+1hr+1

i

for small hi, because hiΔ
v
i
= O
(
hv+1
)
. We see that the presence of global error in the higher-order solution does not affect

the expression for βr
i+1 obtained under the assumption wr

i ,w
v
i
= yi, particularly if r ! v. Usually, though, r = v − 1 is

effective for local extrapolation.

However, the expression for Δrv
i+1 informs of a potential problem: we have

Δrv
i+1 = β

r
i+1hr+1

i + αrv
i Δ

v
i ,

where Δv
i

is the global error in wv
i
. In (7), we see that a subtractive cancellation ensures that the Δv

i
term does not enter

directly into the estimate for βr
i+1. Nevertheless, even if

∣∣∣βr
i+1hr+1

i

∣∣∣ � δ, we could still have
∣∣∣Δrυ

i+1

∣∣∣ > δ, perhaps substantially
so, if
∣∣∣Δv

i

∣∣∣ is large. Moreover, we should certainly expect that
∣∣∣Δv

i

∣∣∣ could become large under iteration (i.e. as i increases),
since global error is essentially an accumulation of local errors. The point here is that, even if local error control is
effective, the global error Δrv

i+1 could become large, and could grow in an uncontrolled fashion.

Usually, the approach to controlling global error involves estimating the global error after the RK solution has been
obtained on the entire interval of integration

[
x0, x f

]
, and then repeating the RK computation on

[
x0, x f

]
, using a suitably

reduced stepsize. Such an approach is termed reintegration.

Our ambition is to develop an algorithm through which the global error in wrv
i+1 can be estimated and controlled in a step-

by-step manner, without the need for reintegration, while at the same time controlling local error in the usual manner of
local extrapolation. To achieve this end, we will use a third RK method of very high order, and we will exploit the safety
factor mentioned previously.
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Our motivation for developing this algorithm is both academic and practical: academically speaking, it is natural to ask
whether or not global error can be controlled in a stepwise manner, given that local error is controlled in such fashion;
practically speaking, real-time computations which require the use of an accurate solution, such as a feedback loop in
a control system, cannot make use of a reintegration process, and so are reliant on the quality of output generated by
stepwise algorithms.

4. The Solution

Say we have three explicit methods available (RKr, RKv and RKz), with

r < v ! z,

so that RKz is of much higher order than RKr and RKv. We would suggest v = r + 1 and z = v + 2, at least.

Let h∗
i denote the stepsize for which

βr
i+1
(
h∗

i

)r+1
= δ,

where δ is a user-imposed tolerance. Of course, since the safety factor σ is less than unity, we have

βr
i+1
(
σh∗

i

)r+1 < δ.

The quantity σh∗
i is the de facto stepsize used, as and when required, in local extrapolation.

We implement local extrapolation in the usual way, using RKr and RKv, propagating wv
i

at each step. Simultaneously, we
implement RKz at the same nodes. At each node we have

wrv
i+1 = yi+1 + ε

r
i+1 + α

rv
i Δ

v
i

wv
i+1 = yi+1 + ε

v
i+1 + α

v
iΔ

v
i

wz
i+1 = yi+1 + ε

z
i+1 + α

z
i
Δz

i
.

Additionally, we can propagate wz
i

in RKr, which gives

wrz
i+1 = yi+1 + ε

r
i+1 + α

rz
i Δ

z
i ,

where wrz
i+1 is the solution obtained using RKr with wz

i
as input.

These expressions give

wrv
i+1 − wz

i+1 = εr
i+1 + α

rv
i Δ

v
i −
(
εz

i+1 + α
z
iΔ

z
i

)
≈ εr

i+1 + α
rv
i Δ

v
i

wrv
i+1 − wrz

i+1 = εr
i+1 + α

rv
i Δ

v
i −
(
εr

i+1 + α
rz
i
Δz

i

)
≈ αrv

i Δ
v
i

wrz
i+1 − wz

i+1 = εr
i+1 + α

rz
i
Δz

i
−
(
εz

i+1 + α
z
i
Δz

i

)
≈ εr

i+1 (8)

since r ! z. We thus have a reliable estimate of the components of Δrv
i+1 = ε

r
i+1 + α

rv
i
Δv

i
.

Now, say a suitable stepsize adjustment has been made, and the solutions
{
wrv

i+1,w
rz
i+1,w

v
i+1,w

z
i+1

}
at xi+1 = xi + σh∗

i have
been computed. We have ∣∣∣εr

i+1

∣∣∣ = ∣∣∣βr
i+1
(
σh∗

i

)r+1
∣∣∣ < δ,

so it is certainly possible that ∣∣∣Δrv
i+1

∣∣∣ = ∣∣∣βr
i+1
(
σh∗

i

)r+1
+ αrv

i Δ
v
i

∣∣∣ � δ. (9)

If this is the case, we proceed to the next step.

If, however, we find ∣∣∣βr
i+1
(
σh∗

i

)r+1
+ αrv

i Δ
v
i

∣∣∣ > δ, (10)

we must conclude that Δv
i

has become too large. We then set

wv
i = wz

i

since
wz

i = yi + ε
z
i + α

z
i−1Δ

z
i−1 ≈ yi,

because RKz is of much higher order than RKv, and we recalculate wrv
i+1 and wv

i+1. In other words, wv
i

is replaced with a
much more accurate value. This will yield

wrv
i+1 = εr

i+1 + α
rz
i Δ

z
i ≈ εr

i+1

wv
i+1 = εv

i+1 + α
vz
i Δ

z
i ≈ εv

i+1,
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so that wrv
i+1 and wv

i+1 will now have relatively small global error
(
∝ Δz

i

)
accumulated from previous iterations. Effectively,

we have greatly reduced, or quenched, the global error present in wrv
i+1 and wv

i+1, due to RKv. We only select to perform a
quench when we encounter the case in (10); the case (9) does not require a modification of wv

i
(and, hence, wrv

i+1 and wv
i+1).

It may occur, and often does, that a stepsize adjustment via local extrapolation is not required, simply because the stepsize
is already small enough. In such case we must, nevertheless, still test the inequality (10) and perform a quench, if
necessary.

Usually, in local extrapolation, we would use wrv
i+1 and wv

i+1 to estimate the local error εr
i+1 but, if wrz

i+1 is available, we
should rather use (8) to estimate εr

i+1, because such estimate is more reliable.

The importance of the safety factor is apparent: σ ensures that
∣∣∣εr

i+1

∣∣∣ is strictly less than δ, so that the global error
component αrv

i
Δv

i
can be accommodated to some degree. The extent of this accommodation is determined by σr+1.

Say σ = 0.85 and r = 3, so that σr+1 = 0.522. Then, assuming both components of Δrv
i+1 have the same sign, αrv

i
Δv

i
can be

accommodated up to a magnitude of 0.478δ, before quenching is needed.

Lastly, we emphasize that, at each node xi+1, it is wrv
i+1 that is presented as the solution to the IVP - this is the numerical

solution for which both local and global error control has been performed.

5. The RKrvQz Algorithm

We describe the sequential execution of the algorithm, which we designate RKrvQz, on a generic subinterval [xi, xi+1] :

1. Use wv
i

and wz
i

in RKr, RKv and RKz to generate wrv
i+1,w

rz
i+1,w

v
i+1 and wz

i+1. Use hi = hi−1 as the stepsize (we discuss
the case of h0 in the Appendix).

2. Estimate εr
i+1 using wrv

i+1 − wv
i+1 or wrz

i+1 − wz
i+1. The former is the usual local extrapolation approach, whereas the

latter is more reliable.

3. If
∣∣∣εr

i+1

∣∣∣ > δ, determine a new stepsize hi = σh∗
i , and repeat steps 1 and 2 using this new stepsize. Then go to step 5.

4. If
∣∣∣εr

i+1

∣∣∣ � δ, go to step 5.

5. Estimate Δrv
i+1 = ε

r
i+1 + α

rv
i
Δv

i
using wrv

i+1 − wz
i+1.

6. If
∣∣∣Δrv

i+1

∣∣∣ > δ, set wv
i
= wz

i
(quenching) and repeat steps 1 and 2 using the stepsize determined in step 3. Then go to

step 8.

7. If
∣∣∣Δrv

i+1

∣∣∣ � δ, go to step 8.

8. We now have the numerical solutions wrv
i+1,w

v
i+1,w

rz
i+1 and wz

i+1, at xi+1 = xi+hi, with the magnitude of both the local
and global error in wrv

i+1 less than the tolerance δ.

6. Numerical Example

By way of example, we apply RK34Q8 (r = 3, v = 4, z = 8) to the IVP

y′ =

(
ln 1000

100

)
y

x ∈ [0, 100]
y (0) = 1

The coefficient in the differential equation has been chosen so that y does not exceed 1000 on the interval of integration,
i.e. y does not vary substantially, so that absolute error control is suitable. The exact solution is, of course,

y (x) = e
ln 1000

100 x.

As we shall see, the RK3 global error in this problem is a rapidly increasing function of x, and so it is an ideal problem
for demonstrating the capabilities of RKrvQz. The RK methods used in RK34Q8 are RK3 (Kincaid & Cheney, 2002),
the ‘classical’ RK4 (LeVeque, 2007) and Fehlberg’s RK8 (Butcher, 2003). The tableaux for these methods are given in
Tables 1 and 2.

In Figure 1 we show ε3
i

and α34
i
Δ3

i
for δ = 10−4, 10−8. The local errors are always less than δ, with the ‘zigzag’ shape of

the curves reflecting stepsize adjustments. Nevertheless, we see that α34
i
Δ3

i
increases monotonically and, at x = 100, it is

about 100 times larger than δ.
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Global errors obtained with local error control only (the sum of the errors shown in Figure 1), and with RK34Q8, are
shown in Figure 2. For the former, the global error increases significantly, even though the local error has been controlled
- a potent example of the problem discussed in Section 3. The RK34Q8 global error, however, remains bounded by δ on
the entire interval of integration - a vivid demonstration of the capability of RK34Q8. Here, the zigzag nature of the error
curves is due to quenching (the propagation of w8

i
). In all calculations shown in these figures, we used σ = 0.85, and the

initial stepsize h0 was determined using the procedure described in the Appendix.

It may be prudent to keep track of the global error in RK8. For this, we estimate ε8
i+1 using Richardson extrapolation

(Butcher, 2003)

ε8
i+1 ≈

w8
i+1 − w8

i+1

(
hi

2

)
1 − 2−8 ,

where w8
i+1

(
hi

2

)
is determined from

θ = w8
i +

hi

2
F8
(
xi,w

8
i ;

hi

2

)
w8

i+1

(
hi

2

)
= θ +

hi

2
F8
(
xi +

hi

2
, θ;

hi

2

)
. (11)

We then assume
F8

y (xi, ξi; hi) ≈ fy
(
xi,w

8
i

)
,

so that
Δ8

i+1 = ε
8
i+1 + α

8
i Δ

8
i ≈ ε8

i+1 +
(
1 + hi fy

(
xi,w

8
i

))
Δ8

i .

With Δ8
0 = 0 and Δ8

1 = ε8
1, we can estimate Δ8

i+1 as RK34Q8 proceeds. If we detect that Δ8
i+1 is approaching δ in

magnitude, then we could increase δ. This would mean that the tolerance on the global error increases occasionally, as
RK34Q8 proceeds, but this is better than incorrectly estimating εr

i+1 and αrv
i
Δv

i
. A possible condition for increasing δ

would be
∣∣∣Δ8

i+1

∣∣∣ ∼ 0.01δ, with δ being increased to 2δ, perhaps. We must state here that this is purely a speculation on our
part; for the example considered here,

∣∣∣Δ8
i+1

∣∣∣ < 0.01δ on [0, 100] always. Indeed, in Figure 3 we show actual and estimated
values of

∣∣∣Δ8
i

∣∣∣ for δ = 10−4, 10−8. It is clear that in both cases,
∣∣∣Δ8

i+1

∣∣∣ ! δ. Also, the estimates are good, particularly for
δ = 10−4.

In Figure 4, we show global errors in RK34Q8 with σ = 0.9. The increases in the safety factor results in more quenches,
in comparison with the error curves in Figure 2.

7. Comments

A few comments, pertaining mostly to possible future research, are appropriate:

1. The use of RKz means that RKrvQz requires greater computational effort than standard local error control via local
extrapolation. This, of course, is the price we must pay for controlling global error, in addition to local error.
However, in comparison with reintegration, the extra effort may not be all that significant. In reintegration, we
would need to use RKr and RKv to obtain solutions on the interval of integration using a smaller stepsize (the RKv

solution would be needed to confirm the quality of the RKr solution), after having performed local error control on
the entire interval. We suspect that the additional computational effort in using RKr and RKv a second time in a
reintegration process would probably not be all that different from the computational effort involved in using RKz

in RKrvQz. In Section 3, we gave our motives for developing RKrvQz, and we are sure that any extra effort in using
RKz is a small price to pay for achieving simultaneous stepwise local and global error control. We are quite sure
that, whenever and wherever possible, accuracy must take precedence over efficiency. This notwithstanding, we
discuss some possible improvements in the efficiency of RKrvQz in #2 and #3 below.

2. The safety factor σ can be used to control the magnitude of αrv
i
Δv

i
. Instead of demanding (9), we rather demand∣∣∣βr

i+1
(
σh∗

i

)r+1
∣∣∣ + ∣∣∣αrv

i Δ
v
i

∣∣∣ � δ,

which is more stringent. This implies ∣∣∣αrv
i Δ

v
i

∣∣∣ � δ −
∣∣∣βr

i+1
(
σh∗

i

)r+1
∣∣∣

and if σ is close to unity,
∣∣∣αrv

i
Δv

i

∣∣∣ must necessarily be small, otherwise quenching must be performed. Since
∣∣∣αrv

i
Δv

i

∣∣∣
is small it is not unreasonable to assume that

∣∣∣αv
i
Δv

i

∣∣∣ will also be small, so that the estimate of
∣∣∣εr

i+1

∣∣∣ using wrv
i+1 −wv

i+1
will be reliable. This simply means that it would not be necessary to determine wrz

i+1 at each node, which might
improve the efficiency of the algorithm.
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3. Efficiency could also be improved by using an embedded RK pair for RKr and RKv. This would reduce the total
number of stage evaluations at each step. A well-known example of such a method is Fehlberg’s embedded RK(4,5)
pair (Fehlberg, 1970). However, we must note that for any given r and v there is no guarantee that an embedded
RK(r, v) pair exists.

4. We could use two tolerances δ1 and δ2, imposed on the local and global error, respectively, with δ1 < δ2. In other
words, we do not impose the same level of accuracy on the global error as we do on the local error. This might
contradict the objectives in #2 above, though.

5. In our numerical example, we estimated εz
i+1 by means of Richardson’s extrapolation, and then used (4) with

Fz
y (xi, ξi; hi) ≈ fy

(
xi,w

z
i

)
. A more accurate, and more efficient, estimate might be obtained by using a higher-

order method RKz′, with z′ > z. A high-order embedded RK(z, z′) pair might be useful here, such as Fehlberg’s
RK(7,8), although error control via local extrapolation with this particular pair is not accurate when f is a function
of x only (Hairer et al, 2000). Verner has offered an embedded RK(5,6) pair (Verner, 1978), but this would restrict
r and v to 2 and 3, respectively, whereas we would probably prefer to have r = 3 or 4.

6. We have considered IVPs for which the solution does not vary considerably in magnitude on the interval of inte-
gration. This has allowed us to consider absolute error control only (wherein a uniform tolerance is used). For
solutions that vary significantly in magnitude, we would need to implement relative error control. This requires
using a node-dependent tolerance

δi = max {δA, δR |yi|} ,
where the tolerances δA and δR are user-defined, and δA is included to cater for those occasions when |yi| ∼ 0.

7. Applying RKrvQz to a system of differential equations would require error control to be applied to each component
of the system. This would lead to a value of h∗

i for each component - we would choose the smallest. We would
also test the inequality (9) for each component; if at least one of the components failed the test, we would perform
a quench in all components.

8. We anticipate that it should not be difficult to modify RKrvQz for implicit RK methods, which would be suitable
for stiff problems. In this regard, RKr, RKv and RKz would all be implicit, A-stable RK methods. For example, we
could use the well-known second-order Implicit Midpoint Rule, the fourth-order Kuntzmann-Butcher method, and
the sixth-order Kuntzmann-Butcher method in place of RKr, RKv and RKz, respectively. We could denote such an
algorithm by IRK24Q6, where the ‘I’ indicates ‘implicit’.

8. Conclusion

We have developed a numerical algorithm for solving initial-value problems in ordinary differential equations, designated
RKrvQz, that is capable of controlling both local and global errors in the numerical solution, in a stepwise manner. The
algorithm uses local extrapolation to control the local error, and so-called quenching to retard the build-up of global error.
Three Runge-Kutta methods are used in RKrvQz : RKr and RKv are used for local error control, and RKz is used for the
estimation of global error and the quenching procedure. A numerical example with a rapidly increasing global error has
demonstrated the effectiveness of the algorithm. In this exploratory paper, we have restricted our work to scalar problems,
with absolute error control. The extension of RKrvQz to systems, and the incorporation of relative error control must be
the subject of future research.
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Appendix

To implement RKrvQz, as described in Section 5, we need an initial stepsize h0. We can estimate h0 in the following way:
we assume that, for RKr, the local error on [x0, x1] is given by

ε1 =
y(r+1) (η)
(r + 1)!

hr+1
0 (12)

η ∈ (x0, x1)

(similar to Gladwell et al, 1987), which is the local error in the Taylor method of order r, to which RKr is equivalent (by
construction). We define the operator

D̂ ≡ ∂

∂x
+ f

∂

∂y

and we determine, using computer algebra software,

y(r+1) =
dr f

dxr
= D̂D̂ · · · D̂︸����︷︷����︸

r times

f

to obtain a symbolic expression for y(r+1), in terms of x and y. We then choose N equispaced nodes on [x0, α] , where α is
user-defined, and we use Euler’s method to obtain approximate solutions w at these N nodes, subject to the initial value
y0. The value of N is also user-defined (N = 10 should be sufficient) and α should be chosen close to x0, particularly for
a strict tolerance δ. We then substitute the values of x and w so obtained at these nodes into the symbolic expression for
y(r+1) (x, y) , and determine the average

∣∣∣y(r+1)
∣∣∣ ≡

N∑
i=1

∣∣∣y(r+1) (xi,wi)
∣∣∣

N
.

The stepsize h0 is then determined from

h0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ (r + 1)!δ∣∣∣y(r+1)
∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
r+1

,

where the tolerance δ replaces ε1 in (12). Note that we use Euler’s method purely to keep computational effort to a mini-
mum, but we could actually use any explicit RK method, including RKr.

Table 1. Tableaux for RK3 (left) and RK4

1
2

1
2

3
4 0 3

4

2
9

3
9

4
9

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6
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Table 2. Tableaux for RK8

2
27

2
27

1
9

1
36

1
12

1
6

1
24 0 1

8

5
12

5
12 0 − 25

16
25
16

1
2

1
20 0 0 1

4
1
5

5
6 − 25

108 0 0 125
108 − 65

27
125
54

1
6

31
300 0 0 0 61

225 − 2
9

13
900

2
3 2 0 0 − 53

6
704
45 − 107

9
67
90 3

1
3 − 91

108 0 0 23
108 − 976

135
311
54 − 19

60
17
6 − 1

12

1 2383
4100 0 0 − 341

164
4496
1025 − 301

82
2133
4100

45
82

45
164

18
41

0 3
205 0 0 0 0 − 6

41 − 3
205 − 3

41
3
41

6
41 0

1 − 1777
4100 0 0 − 341

164
4496
1025 − 289

82
2193
4100

51
82

33
164

12
41 0 1

0 0 0 0 0 34
105

9
35

9
35

9
280

9
280 0 41
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41

840
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Figure 1. Error components ε3 and α34Δ4 for tolerances δ = 10−4, 10−8. Safety factor σ = 0.85.
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Figure 2. Global errors in RK3 (local error control only) and RK34Q8, for tolerances δ = 10−4, 10−8. Safety factor
σ = 0.85.
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Figure 3. Global errors in RK8 (actual and estimated), for tolerances δ = 10−4, 10−8.
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Figure 4. Global errors in RK34Q8, for tolerances δ = 10−4, 10−8, with safety factor σ = 0.9.
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