Pure -Jump Levy Processes and Self-decomposability in Financial Modeling
- Omer Onalan
Abstract
In this study, we review the connections between L\'{e}vy processes with jumps and self-decomposable laws. Self-decomposable laws constitute a subclass of infinitely divisible laws. L\'{e}vy processes additive processes and independent increments can be related using self-similarity property. Sato (1991) defined additive processes as a generalization of L\'{e}vy processes. In this way, additive processes are those processes with inhomogeneous (in general) and independent increments and L\'{e}vy processes correspond with the particular case in which the increments are time homogeneous. Hence L\'{e}vy processes are considerable as a particular type. Self-decomposable distributions occur as limit law an Ornstein-Uhlenbeck type process associated with a background driving L\'{e}vy process. Finally as an application, asset returns are representing by a normal inverse Gaussian process. Then to test applicability of this representation, we use the nonparametric threshold estimator of the quadratic variation, proposed by Cont and
Mancini (2007).
- Full Text: PDF
- DOI:10.5539/jmr.v3n2p41
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org