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Abstract

In this study, we review the connections between Lévy processes with jumps and self-decomposable laws. Self-decomposable
laws constitute a subclass of infinitely divisible laws. Lévy processes additive processes and independent increments can
be related using self-similarity property. Sato (1991) defined additive processes as a generalization of Lévy processes. In
this way, additive processes are those processes with inhomogeneous (in general) and independent increments and Lévy
processes correspond with the particular case in which the increments are time homogeneous. Hence Lévy processes are
considerable as a particular type. Self-decomposable distributions occur as limit law an Ornstein-Uhlenbeck type process
associated with a background driving Lévy process. Finally as an application, asset returns are representing by a normal
inverse Gaussian process. Then to test applicability of this representation, we use the nonparametric threshold estimator
of the quadratic variation, proposed by Cont and Mancini (2007).

Keywords: Pure jump Lévy process, Self-decomposability, Self-similar additive process, Ornstein-Uhlenbeck Process,
Non parametric threshold estimator for quadratic variation

1. Introduction

The usual models of modern finance are based on the assumption of normality for asset returns. However, a remarkable
number of empirical studies have shown that the assumption of normally distributed observations is a poor approximation
for the real data. This is because the returns have features such as jumps, semi-heavy tails and asymmetry. In traditional
diffusion models, price movements are very small in short period of times. But in real markets, prices may show big
jumps in short time periods. When price process model includes the jumps, the perfect hedging is imposable. In this
case, market participants can not hedge risks by using only underlying assets. For these reasons, diffusion models used
in finance is not a sufficient model. A good model should consider discontinuities and jumps in price process. There
exists an intensive literature proposing different models to overcome this deficiency. Some examples of this are jump dif-
fusion model (Merton(1976)), Stochastic volatility models (Heston(1993)), pure jump Lévy processes (Barndorff-Nielsen
(1998)), (Eberlein and Keller(1995)).

Lévy processes is a useful tool in financial modeling providing a good adjustment as can be seen in with reel data by
(Carr and Wu (2004)), (Eberlein et.al. (1998)) or (Fajardo (2006)). Lévy process is a simple Markov process with jumps
which allow us to capture asset returns without the necessity of introducing extreme parameter values by (Fajardo (2006,
p.353)). Lévy models are not adequately fit implied volatility surfaces of equity options across both strike and maturity.
The increments of additive process provide us more flexible models. These processes were studied by (Madan, Carr and
Chang(1998)), (Carr et.al(2007)) being obtained from self-decomposable distributions.

A law in class of self-decomposable laws can be decomposable into the sum of a scaled down version themselves and an
independent term. The class of self-decomposable distributions is obtained as a limit law of a sequence that independent
and suitably normalized. The properties of the return distributions depend on length of return interval. Log returns
are taken monthly can be reasonably represented by a normal distribution. If one is dealing with tick data, then return
distributions may have heavy tails.

Aim of these paper is to review pure- jump Lévy process arising from self-decomposable distributions in financial mod-
eling and to test the presence of a Brownian motion component and discriminating between finite or infinite variation
jumps.

The paper is organized as follows. In section 2, we review fundamental properties of Lévy processes and pure jump Lévy
process in financial modeling. In section 3, we review the self-decomposable distributions. In section 4, we give some
information about the Ornstein – Uhlenbeck process. In section 5, we explain the properties of NIG process. In section 6,
we review the modeling of returns. In section 7, we apply test statistics to reel financial return series. Finally we expound
our conclusions in the last section.
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2. Lévy Processes

In this section, we describe the probabilistic structure of a Lévy process, explaining its usefulness.

Definition 2.1 A cadlag stochastic process X = (Xt)t≥0 is defined on a filtered probability space
(
Ω, �, (�t

)
t≥0 , P
)

is
called a Lévy processes if the following conditions holds:

i) X0 = 0 a.s.

ii) X has increments independent from the past evolution; i.e. Xt − Xs independent from {Xu; u ≤ s} for 0 ≤ s ≤ t

iii) X has stationary increments; i.e. Xt − Xs has the same distribution with Xt−s, s ≤ t

iv) Xt is stochastically continuous, lim
k→∞

P (|Xt+k − Xt | ≥ ε) = 0 for ∀ε > 0

Lévy processes can be viewed as continuous time random walks. The Walks forming building blocks for both of Markov
processes and semi-martingales. There exists a bijection between Lévy process and infinitely divisible distributions Kypri-
anou(2006).

Theorem 2.1 (Cariboni(2007), p.36)). Let X = (Xt)t≥0 be a Lévy process. Then Xt has an infinitely divisible distributionFfor
every t. Conversely ifFis an infinitely divisible distribution, there exist a X = (Xt)t≥0Lévy process, such that distribution
ofX1is given F.

The distribution of a Lévy process X = (Xt)t≥0 is completely determined by any of its marginal distributions (Eberlein
(2007, p.4))

2.1 Infinite divisibility

Let ϕ (u) be the characteristic function of random variable X. The law of a random variable X is said to be infinitely
divisible if there exist another a characteristic function ϕn (u),

ϕ (u) =
[
ϕn (u)
]n (1)

If X ∼ ϕ (u) is infinitely divisible, then for all n ∈ N there exist i.i.d. random variables X
(1/n)
1 , ..., X(1/n)

n all distributed as
ϕn (u) such that

X
d
= X

(1/n)
1 + ... + X(1/n)

n (2)

In the other words, a random variableX is always decomposable into the sum of an arbitrary finite number of i.i.d. random
variables (Papapentoleon(2006))

2.2 Jump diffusion model

Jump diffusion models are those presenting jumps and a random evolution between the jump times

Xt = μ t + σWt +

Nt∑
i=1

Yi (3)

where, W standard Brownian motion, μ is media and sigma the deviation,
Nt∑
i=1

Yi compound Poisson process Now we

consider its characteristic function,

ϕXt
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩t
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝iu μ − u2σ2

2
+ λ

∞∫
−∞

(
eiux − 1

)
F (dx)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

Now, we can consider infinite activity Lévy processes, i.e. they have infinitely many jumps in finite interval.

2.3 The probabilistic properties of Lévy processes

Let Xt be a Lévy process, we consider following characteristic function,

ϕXt
(u) = exp (iuXt)

For time interval[0, t],Δt = ti − ti−1 = t/n, by the assumption of independent and stationary

Increments,
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Xt =
(
Xt1 − Xt0

)
+ ... +

(
Xtn − Xtn−1

) d
= n Xt/n (5)

where
d
= denotes equality in distribution.

ϕXt
(u) = E

(
exp (iuXt)

)
= E
(
exp
(
iunXt/n

))
=
(
E exp

(
iuXt/n

))n
ϕXt

(u) =
(
E exp (iuX1)

) t = et ψ(u) for n = t, (6)

ψ (u) = log E exp (iuX1) (7)

The every Lévy process can be represented in the following form

Xt = μ t + σWt + Zt (8)

Where Zt is a jump process with infinitely many jumps. The characteristic function of a Lévy process X = (Xt)t≥o is given
by the, Lévy- Khintchine formula,

E eiuXt = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝iub − σ2u2

2
+

∞∫
−∞

(
eiux − 1 − iux1{|x|≤1}

)
v (dx)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9)

Where
(
b, σ2, ν

)
is called generating triplet, ν does not have mass on 0, ν ({0}) = 0 and satisfies the following integrability

condition; ∫
�

min
(
|x|2 , 1
)
ν (dx) < ∞ (10)

Lévy-Ito representation describes the path structure of a Lévy process. A Lévy process can be represented in the following
way,

Xt = μ t + σWt +
∑
s≤t

ΔXs1{|ΔXs | ≥1} + lim
ε→0

⎛⎜⎜⎜⎜⎜⎝∑
s≤t

ΔXs1{ε≤ |ΔXs | ≤1} − t

∫
x1{ε≤ |x| ≤1} ν (dx)

⎞⎟⎟⎟⎟⎟⎠ (11)

where b ≥ 0 , σ ≥ 0 , (Wt)t≥0 is a standard Brownian motion.

ΔXs = Xs − Xs− : denote the jump at times. ν is called Lévy measure of {Xt}. Thus,ν (dx) is the intensity of jumps of
sizex.We assumed that the paths of Lévy process is defined over a finite intervals [0, t]. As a consequence the sum of the
jumps in time interval [0, t] with absolute jump size bigger than 1 is a finite sum for each path by Eberlein(2007).

ν (A) = E (card {s ∈ [0, 1] : ΔXs � 0 ,ΔXs ∈ A}) , A ∈ B (R) (12)

In the other words,ν (A) is the average number of jumps of process X in time interval [0, 1] whose sizes fall inA.In general
in a Lévy process, the frequency of the big jumps determines existence of moments of process. The fine structure of the
paths of the process can be read of the frequency the small jumps by Eberlein(2007).

2.4 Finite activity

A stochastic process has finite activity if almost all paths have only a finite number of jumps along any time interval of
finite length,

ν (R) =
∫
R

ν (dx) < ∞ (13)

In case almost all paths have infinitely many jumps along any time interval of finite length, we say the processes has
infinite activity Sato(1999).
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2.5 Finite variation

Let X = (Xt)t≥0 be a Lévy process.

i) If σ2 = 0 and
∫

1 { |x| ≤ 1 } |x| ν (dx) < ∞ and X process have finite variation i.e.,
∑
s≤t

|ΔXs| < ∞ if and only if∫
�

min (|x| , 1) ν (dx) < ∞

ii) If σ2 � 0 or
∫

1{ |x| ≤ 1 } |x| ν (dx) = ∞, then process X have infinite variation Eberlein(2007).

3. Self-Decomposable Laws

There is a very close connection the laws of class L and self-decomposable laws. For these reason, first time, we describe
self-decomposable laws and related process.

3.1 Laws of class L

The name of classLfirst time used by Lévy(1937) and Khintchine(1938). Any random variable in class L is infinitely
divisible by Sato((1999), theorem, 9.3), Pardo(2007). The infinitely divisible laws are the limit laws of triangular arrays,
where arrays of independent random variables which individually negligible. Infinite divisibility is preserved under affine
transformations. Let (Yn ; n = 1, 2, ...) is a sequence of independent random variables and S n =

∑n
i=1 Yi denotes their sum.

Suppose that, there exist centering constants an ∈ R and scaling constants bn > 0, such that the distribution of bnS n + an

converges to the distribution of some random variable X. Then we say that, random variable X is a member of class L.
As explained above, we shortly can say that, if a random variable X has same a distribution the limit of some sequence of
normalized sums of independent random variables, random variable X has a distribution of classLby Carr, Geman, Madan
and Yor (2007).

Definition 3.1 (Self-decomposability). We suppose that ϕ (u) is the characteristic function of a law. We say that this law is
self-decomposable when for c ∈ (0, 1), we can a find another characteristic function ϕc (u) such that,

ϕ (u) = ϕ (cu)ϕc (u) (14)

with ϕc (u) again a characteristic function. ϕc (u) is uniquely determined. For example normal case, ϕc(u) = exp[−(1/2)(1−
c)u]. We can restate this definition for random variables as follows, the distribution of a random variableXis self-
decomposable, for any constant c ∈ (0, 1) we can a find independent random variable Xc such that,

X
d
= c X + Xc (15)

where variables on the right are independent. A random variable X has a distribution of class L if and only if the law of
the X is self-decomposable. The class of self-decomposable distribution is a subclass of infinitely divisible distributions.
Self-decomposable laws arise as marginal laws in autoregressive time series models,

Xt = c Xt−1 + εt

The Lévy measure of the self-decomposable laws is absolutely continuous with following density form,

ν (dx) =
k (x)

x
dx (16)

where, k (x) is increasing for (−∞, x) and decreasing for (x,∞). The density of self-decomposable distributions is uni-
modal. Let be a Lévy process X = (Xt : t ≥ 0). (X1) is self-decomposable if and only if (Xt) is self-decomposable for
every t > 0 (Carr, Geman, Madan and Yor (2007)). The characteristic function of self-decomposable laws have following
form,

E
[
eiuX
]
= exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩iuμ − u2σ2

2
+

∫
�

(
eiux − 1 − iux 1 {|x|< 1}

) k (x)
x

dx

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (17)

Where μ ∈ R , k (x) ≥ 0 and
∫
�

min
(
1, |x|2
)

k(x)
x

dx < ∞.

(Sato(1999), p.95, Corollary15.11), (Carr et.al(2007), p.34). A self-decomposable random variable X is the value at unit
time of some pure jump Lévy processes which sample paths have bounded variation. When the levy density integrates |x|
in the region |x| < 1, forμ =

∫
|x|<1 x (k (x)/x) dx. The characteristic function of the processesX,

44 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

E
[
eiuX
]
= exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∞∫

−∞

(
eiux1
) k (x)

x
dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

We can consider that, the returns are the sum of a suitable number of approximately independent random variables.
Furthermore the return distribution is a limit distribution. Self-decomposable distributions can be consider as candidate
for the unit period distribution of asset returns. Halgreen (1977) is shown that, the hyperbolic distributions are self-
decomposable.

3.2 Self-similarity and self-decomposability

A stochastic process X = (X (t) : t ≥ 0) is called self-similar for any given c ≥ 0,

(X (ct) : t ≥ 0)
d
=
(
cH X (t) : t ≥ 0

)
(19)

Where,H > 0Hurst exponent Petroni ((2008), p.1882). In the other words, we say that one stochastic process is self-similar
such that, the change an in time scale can be compensated by a corresponding change in the spaces scale. The connection
between self-decomposable laws and self-similar additive process is given by Sato(1991). Law is self-decomposable if
and only if it is the law at unit time of a self-similar additive process. Let ϕ (u) be a characteristic function of a law, then,
it can take a characteristic function of Lévy process as follow,

ϕt (u) =
[
ϕ (u)
]t/N (20)

Where, N is time scale, if ϕ (u) is infinite divisible, ϕt (u) is a characteristic function. Now we describe a new function as
follows,

ψk,H (θ) = ϕ
⎡⎢⎢⎢⎢⎣( k

N

)H
θ

⎤⎥⎥⎥⎥⎦ ϕ ⎡⎢⎢⎢⎢⎣( h
N

)H
θ

⎤⎥⎥⎥⎥⎦−1

(21)

It is a characteristic function if and only if ϕ (u) is self-decomposable by Sato ((1999),p.99), Petroni((2008),p.1884).The
stationary process and the self-similar process are related by using first Lamperti representation.

Proposition 3.1 Let X = (Xt)t∈Rbe a stationary process, the a new process defined by

Zt = tH Xlog t , t > 0, Z0 = 0 and H > 0 (22)

is a self-similar process with index H > 0. Conversely if the process Z is self-similar with H > 0, then process defined by

(Xt)t∈R =
(
e−t H Zet

)
t∈R

(23)

is a stationary process((For proof, Pardo(2007), p.9). In general a Lévy process L = (Lt : t ≥ 0) may be constructed from
the H-self-similar process Zt in accordance with

Lt =

∫ et

t

(
1
/
sH
)
dLs (24)

4. Ornstein-Uhlenbeck Processes

An Ornstein-Uhlenbeck process (OU) X = (Xt)t≥0 satisfies following differential equation,

dXt = −λ Xtdt + σdLt (25)

Where, λ > 0, σ > 0 and L = (Lt : t ≥ 0) is a Lévy process. Homogenous Lévy process Lt has that property
E
[
log (1 + |L1|)

]
< ∞. If Lt is non-Gaussian Lévy process, above differential equation has a unique solution. It has

following form,

Xt = e−λ tX0 + σ

t∫
0

e−λ (t−s)dLs (26)

Published by Canadian Center of Science and Education 45



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

Where, λ ∈ R and X0 is initial state. Let ν0 be Lévy measure such that satisfies log- integrable condition,∫
|x|≥1

log |x| v0 (dx) < ∞ (27)

If a Lévy process satisfies (27) condition then it has a self-decomposable distribution. If an OU process X = (Xt)t≥0 is
stationary, it’s characteristic function has following form,

ϕ (u) = ϕ
(
u e−λ t
)
ϕc (u) (28)

This denotes that, the marginal distribution of (Xt) is self-decomposable.

ϕc (u) = exp
(
κ (u) − κ

(
u e−λ t
))

(29)

Where κ (u) is cumulant of (Xt) and denoted by as κ (u) = log ϕ (u)by Barndorff-Nielsen O.E.,(1998), lemma 3.1). Let L

be the background driving Lévy process of OU processes Xand
∫
|x|≥1 log |x| v0 (dx) < ∞. Where ν is Lévy measure of

the processL . Then the law of Xt converge towards ζ a self-decomposable law as u → ∞. Characteristic function of this
process is given by

ζ (u) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞∫

0

φ
(
u e−λ s
)

ds

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (30)

φ is the characteristic exponent of L1 process. (For details Sato (1999), theorem 17.5)

Finally, we can say that the limit distribution ζ of an OU process is self-decomposable. The distribution of a random
variable X1 is self-decomposable if

X1
d
=

∫ ∞

0
e−sdLs (31)

An OU process Xt has a stationary distribution. It’s characteristic function ϕ (u) = exp (ψ (θ)) is self-decomposable and

ψX1 (θ) =

∞∫
0

ψL1

(
θ e−as)ds (32)

5. Normal inverse Gaussian distribution

Normal Inverse Gaussian Distribution was introduced by Barndorff-Nielsen(1997). This distribution is used in Bolviken
and Benth(2000), Prause(1999), Rydberg(1997) to model equity returns. NIG distribution has semi-heavy tails and a
special case with λ = − 1/2 parameter in the class of Generalized Hyperbolic distributions (GH). GH class is infinitely
divisible and self-decomposable. The probability density function of the NIG (α, β, μ, δ) is defined by as follows,

fNIG (x, α, β, μ, δ) =
α δ

π
exp
[
δ

√
α2 − β2 + β (x − μ)

]
.

K1

(
α

√
δ2 + (x − μ)2

)
√
δ2 + (x − μ)2

(33)

with parameters, δ > 0 , μ ∈ (−∞,∞) and 0 < |β| < ∞. The function Kν is modified Bessel function of third kind
with index ν.

Kν (x) =
1
2

∞∫
0

uν−1 exp
{
−1

2
x

(
u +

1
u

)}
du (x > 0)

According to Blaesild(1981),

K∓ 1
2

(x) =
√

π

2x
.e−xandKν (x) = K−ν (x)
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The characteristic function of NIG distribution,

ϕNIG (u) = exp
{
δ

√
α2 − β2 − δ

√
α2 − (β + iu)2 + iuμ

}
(34)

The normal Inverse Gaussian distribution has semi-heavy tails i.e.

fNIG (x) ∼ const |x|−3/2 e(−α |x|+β x) as x → ∓∞ (35)

The central moments of a random variable X ∼ NIG (α, β, μ, δ) are

E [X1] = μ + δ
β√

α2 − β2
Var [X1] =

δ√
α2 − β2

+
δ β2( √
α2 − β2

)3 = δ α2

γ3

S kew [X1] = 3
β

α

√
δ
√
α2 − β2

Kurtosis [X1] = 3 + 3
[
1 + 4
(
β

α

)2] 1

δ
√
α2 − β2

The Lévy measure of NIG has following form,

νNIG (dx) =
α

π
.
δ

|x| exp {β x} K1 (α |x|) dx (36)

6. The Modeling of Returns

In this study, we consider log price changes,

Xt = ln S t+Δ − ln S t (37)

Where, X process reflects the multiplicative character of price changes. When we use daily price data, Δ typically will
have the value 1. In generally, the properties of return distribution depend on the length of the return interval Δ. For long
Δ as a result of central limit theorem, the returns can be described with a Gaussian distribution. In general, the normal
distribution is not suitable model returns. In this case, as a model the Generalized hyperbolic distributions or it’s a subset
can be used. These distributions are infinitely divisible and self-decomposable. In this study we used a non-parametric
threshold technique which is proposed to test integrated variance which based on discrete observed prices by Cont and
Mancini(2007). We can determine whether jump type process is suitable or not as a model for price process, using with
this technique. We assume that X = (Xt : t ≥ 0) is Lévy process generated by the normal inverse Gaussian distribution
that is fitted to the real data. In this case, the increments of price process a long time interval 1, Xt+1 − Xt are distributed
according to the NIG distribution. The distribution of X1 is the fitted to NIG distribution.

6.1 Test statistics

In this section we consider Blumenthal-Getoor index is described as follows,

α = inf

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩p ≥ 0 ,
∫

{|x|≤1}

|x|p ν (dx) < ∞

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ < 2 (38)

This index measures activities of small jumps of Lévy process. For jump type Lévy process, α ∈ [0, 2]. For example
Normal inverse Gaussian motion has infinitely variation and α = 1 by Cont and Mancini(2007).

6.1.1 Test for the presence of a continuous martingale component of a Lévy model

For choice a coefficient β we suggest that it must be near 1 but different to 1. β ∈ [0.5, 1]

We choose a threshold r (k) = kβ and

ΔiY = ΔiX + σ
√

k Zi

Where Zi ∼ N (0, 1) as n = T /k or k → 0,time horizon T = nxk, T is measured by as an annually, ΔiX denotes log-returns

Null Hypothesis H0 : σ ≡ 0 Test statistics as follow,
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V̂k =
∑n

i=1
(ΔiY)2 I

{
(ΔiY)2 ≤ r (k)

}
, Q̂k = (1/3k)

∑n

i=1
(ΔiY)4 I

{
(ΔiY)2 ≤ r (k)

}

Tα
k =

[(
V̂k − σ2n.k

)/√
2k Q̂k

]
→ N (0, 1)

If P
{ ∣∣∣Tα

k

∣∣∣ > 1.96
}

is near 0.05, we accept null hypothesis.

Under the alternative hypothesisH1 : σ � 0, above test statistic diverges to +∞
Remark: For a given constant σ value, the above procedure again apply

Tα
k( j) =

[(
V̂k − σ2n.k

)/√
2k Q̂k

]
, j = 1, 2, 3, ..., M

Then we calculate rate of Tα
k( j) statistic which satisfies condition

∣∣∣∣Tα
k( j)

∣∣∣∣ > 1.96.

V̂k =
∑n

i=1
(ΔiY)2 I

{
(ΔiY)2 ≤ r (k)

}
, Q̂k = (1/3k)

∑n

i=1
(ΔiY)4 I

{
(ΔiY)2 ≤ r (k)

}
If P
{ ∣∣∣Tα

k

∣∣∣ > 1.96
}
>> 0.05, we reject the null hypothesis. Where ΔiX = Xti − Xti−1 and σ2 is a know variance.

6.1.2 The test whether the jump component has finite variation

Null Hypothesis H0 : α < 1

Δi M̂ = ΔiX I
{
(ΔiX)2 > r (k)

}
+ σ

√
k Zi , Zi ∼ N (0, 1)

V̂k =
∑n

i=1

(
Δi M̂
)2

I

{(
Δi M̂
)2

≤ r (k)
}

, Q̂k = (1/3k)
∑n

i=1

(
Δi M̂
)4

I

{(
Δi M̂
)2

≤ r (k)
}

Tα
k =

[(
V̂k − α2T

)/√
2k Q̂k

]
→ N (0, 1)

If P
{ ∣∣∣Tα

k

∣∣∣ > 1.96
}

is near 0.05, we accept null hypothesis.

6.1.3 The test of presence jumps

The variance of a Lévy processes is estimated as following form, S X =
n−1∑
i=0

(
Xti+1 − Xti

)2
Where each ti is a division of interval [0, t] for each n ∈ N.

∣∣∣ti − tti−1

∣∣∣ = (t/n) = Δti and t = n.Δti

S 2
X =

n−1∑
i=0

(
Xti+1 − Xti

) (
Xti − Xti−1

)
, S 4

X =

[
n

t

] n∑
i=4

∣∣∣ΔnXti−1

∣∣∣ ... ∣∣∣ΔnXti−4

∣∣∣
Null hypothesis H0 : Xt is a continuous Lévy process

Zn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝S X −

S 2
X

K2

⎞⎟⎟⎟⎟⎠/
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

t

n

√
S 4

X

K4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , K = (2/π)0.5

If Zn > zα, we reject the null hypothesis , where zα is chosen as a quantile (Petr(2007,p.2008)).

7. Application to Real Data

In this section we consider the time series of NIKKEI 225 in Japan daily returns from 04.01.1982 to 30.09.2005 and ISE
Compound 100 index in Turkey daily returns from 06.02.2002 to 15.02.2007 as an application for above presented model.
We use k = 1/252 = 0, 003968 and r (k) = k0,75. First time we divided return that each has 500 daily return for NIKKEI
225 index, similarly ISE Composite 100 index returns divided sub groups which include 300 daily return.
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For ISE 100 index returns, the probability P
{ ∣∣∣Tα

k

∣∣∣ > 1.96
}

is not near to 0.05. For this reason, we don’t accept H0 : σ ≡ 0
null hypothesis. In this case, ISE Composite 100 index price process has continuous time martingale component (i.e.
Brownian motion component) Table 1.

In the testing finite variation of jump component of ISE Composite 100 return process, we found that different value for
k values, P

{ ∣∣∣Tα
k

∣∣∣ > 1.96
}
>> 0.05 thus we don’t accept H0 : α < 1 null hypothesis. This result said that to us, ISE

Composite 100 return process can be modeled by Levy process specially we can use NIG distribution as a model for ISE
Composite 100 return process. Because Blumenthal-Getoor index α can be α ≥ 1.This mean is that the return process has
infinitely variation thus we can use hyperbolic models in this case.Table2.

For NIKKEI 225 index, P
{ ∣∣∣Tα

k

∣∣∣ > 1.96
}
>> 0.05 so we can accept that this index include the Brownian component and

infinite variation of jump component.Table3 and Table4.

Both of the ISE 100 and NIKKEI 225 indexes, the values of Zn statistics are very high. For this reason, we reject that
H0 : Xt is a continuous Lévy process, null hypothesis. Because the both index include Brownian motion part and jump
component together. You can look Table5.

8. Conclusion

The laws of self-decomposable distributions class are be constitute as a limit laws of Lévy – driven Ornstein-Uhlenbeck
process. These laws can be related with general additive process. The Lévy processes has flexible structure to model in
real phenomena in finance such as heavy-tails, jumps and volatility smile. In this study, we focus on Levy process and it’s
increments laws. The family of self-decomposable laws always has both of self-similarity and stationary of increments.
We tested whether the pure jump Levy process is a suitable model or not for financial return series. We used a threshold
estimator of quadratic variation by proposed by Cont and Mancini. We applied this test statistics to two international
index return series as ISE composite 100 and NIKKEI 225. The empirical results on the ISE Composite 100 and NIKKEI
225 indexes indicated that jumps are present in the data. Both of them have presence of infinity activity jumps and a
continuous component. The short-time behavior of the pure jump component can be quantized its Blumenthal-Getoor
index. When the value of this index approach to 2, the small jumps near to zero increase. In this case process likes
diffusions. We do not claim on the basis of this limited evidence that empirical results are a general way for all market.
Because the empirical results can depend on the considering assets the time period the type of the data.
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Table 1. The testing for the presence of a Brownian component for ISE Composite 100 index price process

ISE 100 1 2 3 4 5
V̂k 0,029252 0,190011 0,130958 0,166943 0,027818
Q̂k 0,586629 0,12095 0,015813 0,040404 0,003087
Tk( j) 0,413469 6,116505 11,56244 9,301056 5,570338

Table 2. The testing finite variation of jump component of ISE Composite 100 index price process

ISE 100 1 2 3 4
V̂k 0,280954 0,067261 0,001438 0,023769
Q̂k 0,525418 0,093732 1,89E-06 0,018
Tk( j) 4,334696 2,447545 0,073143 1,956218

Table 3. The testing for the presence of a Brownian component for NIKKEI 225 Index

NIKKEI 225 1 2 3 4 5 6
V̂k 0,08143 0,223476 0,559763 0,378513 0,525433 0,27848
Q̂k 0,002493 0,207762 0,183874 0,064663 0,1103662 0,025918
Tk( j) 18,26515 5,491945 14,62282 16,67741 17,72089 19,37838
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Table 4. The testing finite variation of jump component of NIKKEI 225 Index returns

NIKKEI 225 1 2 3 4 5 6
V̂k 0,000185 0,059225 0,098538 0,0498 0,067396 0,000549
Q̂k 9,09E-09 0,187877 0,119161 0,030012 0,0472258 9,39E-08
Tk( j) 0,336161 1,521648 3,166666 3,181129 3,427891 -0,01413

Table 5. The testing the presence of jumps under the hypothesis that price process is continuous Lévy process

Index Zn

NIKKIE 225 179.1
ISE Composite 100 113.7

Table 6. Estimated parameters of the normal inverse Gaussian distribution

NIG Parameters
Index α̂ β̂ μ̂ δ̂

NIKKEI 225 0,261649 0,000218 0,000096 0,000045
ISE 100 0,525443 0,007822 0,001017 0,000238
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