Modules Whose Nonzero Endomorphisms Have E-small Kernels
- Abdoul DIALLO
- Papa DIOP
- Mamadou BARRY
Abstract
Let $R$ be a commutative ring and $M$ an unital $R$-module. A submodule $L$ of $M$ is called essential submodule of $M$, if $L\cap K\neq\lbrace 0\rbrace$ for any nonzero submodule $K$ of $M$. A submodule $N$ of $M$ is called e-small submodule of $M$ if, for any essential submodule $L$ of $M$, $N+L= M$ implies $L=M$. An $R$-module $M$ is called e-small quasi-Dedekind module if, for each $f\in End_{R}(M),$ $ f\neq 0$ implies $Kerf$ is e-small in $M$. In this paper we introduce the concept of e-small quasi-Dedekind modules as a generalisation of quasi-Dedekind modules, and give some of their properties and characterizations.- Full Text: PDF
- DOI:10.5539/jmr.v10n3p111
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org