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Abstract

Let R be a commutative ring and M an unital R-module. A submodule L of M is called essential submodule of M, if
L ∩ K , {0} for any nonzero submodule K of M. A submodule N of M is called e-small submodule of M if, for any
essential submodule L of M, N + L = M implies L = M. An R-module M is called e-small quasi-Dedekind module if, for
each f ∈ EndR(M), f , 0 implies Ker f is e-small in M. In this paper we introduce the concept of e-small quasi-Dedekind
modules as a generalisation of quasi-Dedekind modules, and give some of their properties and characterizations.
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1. Introduction

Throughout all rings are associative, commutative with identity and all modules are unitary R-module. A submodule L of
M is called essential submodule of M, if L ∩ K , {0} for any nonzero submodule K of M. (Zhou, D. X. & all (2011))
introduce and study the concept of e-small submodules, where a submodule N of M is called e-small submodule of M
if, for any essential submodule L of M, N + L = M implies L = M. An R-module M is called e-small quasi-Dedekind
module if, for each f ∈ EndR(M), f , 0 implies Ker f is e-small in M. (Mijbass, A. S. (1997)) introduced and studied
the concept of quasi-Dedekind module. In this paper we introduce and study the concept of e-small quasi-Dedekind as
a generalization of quasi-Dedekind module. Also, we investigate the basic properties and characterizations of e-small
quasi-Dedekind module. Finally we study the relations between e-small quasi-Dedekind modules and some classes of
modules.
The notation N ≤ M means that N is a submodule of M and N ≤⊕ M denotes that N is a direct summand of M.

2. Preliminaries

Definition 1 Let M be an R-module and N ≤ M.

1. N is called essential submodule of M (N ≤e M, for short) if, N ∩ K , {0} for any nonzero submodule K of M.

2. N is called small submodule of M (N ≪ M, for short) if, for any submodule L of M, N + L = M implies L = M

3. N is called e-small N ≪e M, (N ≪e M, for short) if, for any essential submodule L of M, N + L = M implies
L = M.

Remark 1 Each small submodule is e-small submodule. But the converse is not true in general for example: N = {0, 3}
is a submodule of Z/6Z as a Z-module. N is e-small but N is not small.

Lemma 1 (Zhou, D. X. & all, Proposition 2.5)

1. Let N, K and L are submodules of an R-module M such that N ⊆ K, if K ≪e M, then N ≪e M and K/N ≪e M/N.

2. If K ≪e M and f : M −→ M′ is a homomorphism, then f (K) ≪e M′. In particular, if K ≪e M ⊆ M′, then
K ≪e M′.

3. Assume that K1 ⊆ M1 ⊆ M,K2 ⊆ M2 ⊆ M and M = M1 ⊕ M2, then K1 ⊕ K2 ≪e M1 ⊕ M2 if and only K1 ≪e M1
and K2 ≪e M2.

Lemma 2 (Aidi, S. H. & all, (2015), Lemma 2.8)
Let M be an R-module, let K ≤ N ≤ M be submodules of M. If K ≪e M and N ≤⊕ M, then K ≪e N.
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3. Some Properties Related to E-small Quasi-Dedekind Modules

Definition 2 An R-module M is called e-small quasi-Dedekind if for all
f ∈ EndR(M), f , 0 implies Ker f ≪e M.

Example 1 Every semi-simple module is e-small quasi-Dedekind.

Remark 2 It is clear that every quasi-Dedekind R-module is an e-small quasi-Dedekind R-module. But the converse is
not true in general, for example Z as a Z-module is e-small quasi-Dedekind but it is not quasi-Dedekind.

Remark 3

1. The epimorphic image of e-small quasi-Dedekind module is not necessary e-small quasi-Dedekind; for example Z
as a Z-module is e-small quasi-Dedekind. Let π : Z −→ Z/12Z, where π is the natural projection. Z/12Z as a
Z-module is not e-small quasi-Dedekind.

2. The direct sum of e-small quasi-Dedekind modules is not necessarily an e-small quasi-Dedekind module; for exam-
ple each of Z/4Z and Z/3Z as Z-module is e-small quasi-Dedekind. But Z/4Z ⊕ Z/3Z � Z/12Z is not an e-small
quasi-Dedekind Z-module, since Z/12Z is not e-small quasi-Dedekind.

Proposition 1 Let M1,M2 be R-modules such that M1 � M2.
Then M1 is an e-small quasi-Dedekind R-module if and only if M2 is an e-small quasi-Dedekind R-module.

Proof.⇒) Let f ∈ EndR(M2), f , 0. Since M1 � M2, there exists an isomorphism g : M1 −→ M2 and g−1 : M2 −→ M1.
Let h = g−1 ◦ f ◦ g ∈ EndR(M1). It is clear that h , 0 and so g(kerh) ≪e M2 by lemma 1. On the other hand we have
g(Kerh) = Ker f . Hence Ker f ≪e M2. So M is e-small quasi-Dedekind.
⇐) The proof of the converse is similarly.

Proposition 2 Every direct summand of an e-small quasi-Dedekind module is an e-small quasi-Dedekind module.

Proof. Let M = N ⊕ K such that M is an δ-small quasi-Dedekind R-module.
Let f : K −→ K, f , 0. We have h = i ◦ f ◦ p ∈ EndR(M), h , 0, where p is the natural projection and i is the inclusion
mapping. Hence Kerh ≪e M. But Ker f ⊆ Kerh, so by lemma 1, Ker f ≪e M. On the other hand Ker f ≤ K implies
Ker f ≪e K by lemma 2. Thus K is an e-small quasi-Dedekind R-module.

Proposition 3 Let M be an R-module and let N, L ≤ M with M = N + L and M/N ∩ N e-small quasi-Dedekind. Then
M/N and M/L are e-small quasi-Dedekind R-modules.

Proof. Since M/N ∩ L = (N/N ∩ L) ⊕ (L/N ∩ L), by proposition 2, N/N ∩ L and L/N ∩ L are e-small quasi-Dedekind.
But N/N ∩ L � M/L and L/N ∩ L � M/N, so M/L and M/N are e-small quasi-Dedekind.

Definition 3 An R-module is M called N-e-small quasi-Dedekind if, for every 0 , ϕ ∈ HomR(M,N), Kerϕ ≪e M.

In view of the above definition, an R-module M is e-small quasi-Dedekind if and only if M is M-e-small quasi-Dedekind.

Theorem 1 Let M1 and M2 be two R-modules and let M = M1 ⊕ M2. If M is e-small quasi-Dedekind, then Mi is
M j-e-small quasi-Dedekind for all i, j = 1, 2.

Proof. Suppose that M = M1 ⊕ M2 is e-small quasi-Dedekind. Then, by proposition 2, M1 and M2 are e-small quasi-
Dedekind. Thus M1 is M1-e-small quasi-Dedekind and M2 is M2-e-small quasi-Dedekind. Let 0 , f ∈ HomR(M1,M2).
Then h = i ◦ f ◦ p ∈ EndR(M), where p is the natural projection and i is the inclusion mapping. It is clear that h , 0.
So Kerh ≪e M1 ⊕ M2, because M = M1 ⊕ M2 is e-small quasi-Dedekind. On the other hand, we may assume that
Ker f ⊕ {0} ⊆ Kerh. Thus Ker f ⊕ {0} ≪e M1 ⊕ M2. Then by lemma 1, Ker f ≪e M1 and so M1 is M2-e-small quasi-
Dedekind.

Theorem 2 Let M be an R-module. Then M is e-small quasi-Dedekind if and only if Hom(M/N,M) = {0}, for all
N 3e M.

Proof. ⇒) Suppose on the contrary that there exists N 3e M such that Hom(M/N,M) , {0}. Then there exists
φ : M/N −→ M, φ , 0. Hence φ ◦ π ∈ EndR(M), where π is the canonical projection. It is clear that φ ◦ π , 0 and so
Ker f (φ ◦ π) ≪e M. Since N ⊆ Ker(φ ◦ π), N ≪e M by lemma 1. This is a contradiction.
⇐) Suppose that there exits f ∈ EndR(M), f , 0 such that Ker f 3e M. Define g : M/Ker f −→ M by g(m + Ker f ) =
f (m), for all m ∈ M. It is clear that g , 0. So Hom(M/Ker f ,M) , {0} which is a contradiction.

Remark 4 If M is an e-small quasi-Dedekind R-module, and N ≤ M. Then it is not necessary that M/N is an e-small
quasi-Dedekind R-module; for example the Z-module M = Z is e-small quasi-Dedekind. Let N = 12Z ≤ Z, then
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M/N = Z/12Z is not an e-small quasi-Dedekind R-module.

Definition 4 Let M be an R-module, put Z(M) = {m ∈ M : annR(m) ≤e R}. M is called nonsingular if Z(M) = {0}, and
singular if Z(M) = M. The Goldie torsion submodule Z2(M) of M is defined by Z(M/Z(M)) = Z2(M)/Z(M). M is called
Goldie torsion if M = Z2(M).

Proposition 4 Let M be an e-small quasi-Dedekind R-module such that M/U is semi-simple nonsingular for all U 3e M.
Then M/N is an e-small quasi-Dedekind R-module, for all N ≤ M.

Proof. Let K/N 3e M/N. So by lemma 1, K 3e M. Suppose that Hom((M/N)/(K/N),M/N) , {0}. Since
Hom((M/N)/(K/N),M/N) � Hom(M/K,M/N), there exists f : M/K −→ M/N such that f , 0. Since M/K is semi-
simple nonsingular, so by (Lam T.Y(1999), Exer. 12A.), there exists g : M/K −→ M such that π ◦ g = f , where π is
the canonical projection. Hence π ◦ g(M/K) = f (M/K) , 0, so g , 0. But g ∈ Hom(M/K,M) and K 3e M. Thus
Hom(M/K,M) , {0} and K 3e M, which is a contradiction. Thus M/N is an e-small quasi-Dedekind R-module.

Proposition 5 Let M be an R-module. The following statements are equivalent:

1. M is e-small quasi-Dedekind.

2. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
f (N) = f (M), then N = Img for some g2 = g ∈ EndR(M).

3. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
Ker f + N = M, then there exist a unique complete set (g, g1) of orthogonal idempotents in EndR(M) and N1 ≤ M
with N = Mg and N1 = Mg1.

Proof. 1) ⇒ 2) Suppose that M is δ-small quasi-Dedekind. Let 0 , f ∈ EndR(M). Suppose that there exists N ≤ M
such that f (N) = f (M). For any complement L to N in M, we have N ⊕ L ≤e M. It is clear that N + L + Ker f = M. So
N ⊕ L = M, because M is e-small quasi-Dedekind. So there exists g2 = g ∈ EndR(M) with N = Img.
2)⇒ 3) Let 0 , f ∈ EndR(M). Suppose that there exists N ≤ M such that Ker f + N = M. Then f (N) = f (M). So, by 2)
and (Anderson, F.W.,& all (1973), Corollary 5.8 and Corollary 6.20), the result is obtained.
3) ⇒ 1) Let 0 , f ∈ EndR(M). Let Ker f + N = M where N ≤e M. By 3) and (Anderson, F.W.,& all (1973), Corollary
6.20), N ≤⊕ M. Thus M = N and so M is e-small quasi-Dedekind.

Recall that a submodule N of an R-module M is called fully invariant if f (N) ⊆ N for any f ∈ EndR(M).
An idempotent e in a ring R is called left semicentral if xe = exe for each x ∈ R.
N is a closed submodule of M if N has no proper essential extension inside M.

Proposition 6 Let M be an R-module. Then the following conditions are equivalent:

1. M is e-small quasi-Dedekind.

2. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
f (N) = f (M), then N is closed in M.

Proof. 1)⇒ 2) By proposition 5, N ≤⊕ M. So N is closed.
2) ⇒ 1) Let 0 , f ∈ EndR(M). Let Ker f + N = M where N ≤e M. Then f (N) = f (M). By 2) N is closed in M. Thus
M = N and so M is e-small quasi-Dedekind.

Proposition 7 Let M an R-module such that for any N ≤ M, Z2(M) ⊆ N. Then the following statements are equivalent:

1. M is e-small quasi-Dedekind.

2. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
Ker f + N = M, then M/N is nonsingular.

3. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
Ker f + N = M, then N is closed in M.

Proof. 1)⇒ 2) Let 0 , f ∈ EndR(M). Suppose that there exists N ≤ M such that
f (N) = f (M). By proposition 6, N is closed in M. By our assumption,
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Z2(M) ⊆ N. So by ( Asgari, S. & all(2012), Proposition 1.2), M/N is nonsingular.
2)⇒ 3) . Let 0 , f ∈ EndR(M). Suppose that there exists N ≤ M with Ker f + N = M. Then f (N) = f (M). By 2), M/N
is nonsingular. Hence by ( Asgari, S. & all(2012), Proposition 1.2), N is closed in M.
3)⇒ 1) Follows from proposition 6.

Proposition 8 Let M be an e-small quasi-Dedekind R-module such that for any nonzero f ∈ EndR(M), there exists N ≤ M
with f (N) = f (M). Then the following assertions are verified:

1. For any fully invariant submodule L ≤ M, N + L is fully invariant in M if and only if g1End(M)N ⊆ L for some
g2

1 = g1 ∈ EndR(M).

2. N is fully invariant in M if only if there exists g2 = g ∈ EndR(M) with g semicentral.

3. There exists N′ ≤ M such that N is a fully invariant submodule of M if and only if HomR(N,N′) = {0}.

4. There exists an epimorphism g ∈ HomR(M,N) and a monomorphism
h ∈ HomR(N,M) such that M = Kerg ⊕ Imh.

5. N = eE(M) ∩ M for some e2 = e ∈ EndR(E(M)).

Proof. Since M is e-small quasi-Dedekind, by proposition 5, N ≤⊕ M. Thus N = gM for some g2 = g ∈ EndR(M). It is
clear that g1 = (1 − g) is an idempotent in EndR(M).

1. ⇒) Let x ∈ g1End(M)g and m ∈ M. Then xm = xgm ∈ gM + L = N + L. On the other hand we have xm = g1xm ∈
g1L ≤ L.
(⇐ Let s ∈ EndR(M). Then s(gM) = (gs + g1s)gM ⊆ gM + g1EndR(M)gM ⊆ gM + L.

2. ⇒) Let s ∈ EndR(M) and m ∈ M. By 1), N = gM for some g2 = g ∈ EndR(M). Then sgm = gm′ for some m′ ∈ M.
It follows that gsgm = g2m′ = gm′ = smg. Hence g is semicentral.
(⇐ Let s ∈ EndR(M) and m ∈ M. Thus sgm = gsgm ∈ gM and so N is fully invariant in M.

3. Since N ≤⊕ M, there exists N′ ≤ M with M = N ⊕ N′. In this case, it is is well know that N is a fully invariant
submodule of M if and only if HomR(N,N′) = {0}.

4. Since N ≤⊕ M, there exists an epimorphism g ∈ HomR(M,N) and a homomorphism h ∈ HomR(N,M) such that
g ◦ h = 1N . It follows that h is a monomorphism. It is clear that hg an indempotent and so M = Kerg ⊕ Imh.

5. Since N ≤⊕ M, N is a closed submodule of M. Since N ⊆ M ⊆ E(M), E(M) contains a copy of E(N). Thus
N ≤e E(N)∩M implies that N = E(N)∩M. Since E(N) is injective, E(N) = eE(M) for some e2 = e ∈ EndR(E(M)).
So the result is obtained.

Proposition 9 Let M be an e-small quasi-Dedekind R-module such that for any nonzero f ∈ EndR(M), there exists
N ≤ M with f (N) = f (M). Let L be a fully invariant submodule of M such that L ≤e N. Then the following assertions are
verified:

1. g1EndR(M)N ⊆ Z(M) for some g2
1 = g1 ∈ EndR(M).

2. N + Z(M) is fully invariant in M.

3. If Z(M) ⊆ N, then N is fully invariant. Moreover, if L ≤e K, then K ⊆ N. In particular, Z2(M) ⊆ N.

Proof.

1. We have N = gM for some g2 = g ∈ EndR(M). Then g1 = (1 − g) is an idempotent in EndR(M). Let m ∈ M. Then
gmI ⊆ L for some I ≤e R. Thus g1EndR(M)gmI ⊆ N ∩ g1M = {0}. It follows that g1EndR(M)N ⊆ Z(M).

2. Result from (1) and proposition 8 (1).

3. By (2), N is a fully invariant submodule of M. Let k ∈ K. Thus kI ⊆ L for some I ≤e R. So g1k ∈ Z(M) ⊆ N. On
the other hand k = gk + g1k ∈ N. Thus K ⊆ N.

Proposition 10 Let M be a nonsingular R-module. Then the following conditions are equivalent:
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1. M is e-small quasi-Dedekind.

2. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
f (N) = f (M), then N ≤⊕ M.

3. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
Ker f + N = M and ((N + Z2(M))/Z2(M)) ≤e M/Z2(M) , then M = N.

Proof.
1)⇒ 2) Let 0 , f ∈ EndR(M). Suppose that there exists N ≤ M such that f (N) = f (M). Then the result follows directly
from proposition 5.
2)⇒ 3) Let 0 , f ∈ EndR(M). Suppose that there exists N ≤ M with
Ker f + N = M. Then f (N) = f (M) and by 2), there exists L ≤ M such that M = N ⊕ L. By hypothesis, ((N +
Z2(M))/Z2(M)) ≤e M/Z2(M). Thus by ( Asgari, S. & all(2012), Proposition 1.1), M/N is Goldie torsion. On the other
hand M = N ⊕ L implies that M/N � L is Goldie torsion. It follows that L = {0}. This implies that M = N.
3) ⇒ 1) Let M an R-module and a nonzero f ∈ EndR(M) such that Ker f + N = M, where N ≤e M. We have M/N
is singular and so Goldie torsion. Thus by 3) and ( Asgari, S. & all(2012), Proposition 1.1), M = N. So M is e-small
quasi-Dedekind.

Definition 5

1. An R-module M is called prime if AnnR(M) = AnnR(N) for each 0 , N ≤ M.

2. An R-module M is called faithful if AnnR(M) = {0}.

Proposition 11 Let M be a prime faithful R-module. Then the following conditions are equivalent:

1. M is e-small quasi-Dedekind.

2. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
f (N) = f (M), then N ≤⊕ M.

3. For any nonzero f ∈ EndR(M), if there exists N ≤ M such that
Ker f + N = M and (N + Z2(M)) ≤e M, then M = N.

Proof. Suppose that M is prime. Then AnnR(M) is a prime ideal of R. Also M is a torsion-free module R-module, where
R = R/AnnR(M). We have R = R/AnnR(M) � R, because M is faithful. Hence M is a torsion-free module over a integral
domain. Thus by (Lam, T. Y. (1999), P.247), M is nonsingular. Thus the result follows from proposition 10 and ( Asgari,
S. & all(2012), Proposition 1.1).

Remark 5 Let N ≤ M and f ∈ EndR(M), f , 0. If f (N) ≪e f (M), then it is not necessarily that N ≪e M for
example: let Z/12Z as Z-module, and let N =< 3 >≤ Z/12Z. Let f = 4x ∈ EndZ(Z/12Z). It is clear that f , 0 and
f (N) = f (< 3 >) = {0} ≪e f (Z/12Z) = f (M), but < 3 > 3e Z/12Z.

Proposition 12 Let M be an e-small quasi-Dedekind nonsingular R-module. Let a nonzeo f ∈ EndR(M) such that for
each N ≤ M, f (M)/ f (N) is singular. If f (N) ≪e f (M), then N ≪e M.

Proof. Let N + K = M where K ≤e M. Then f (N) + f (K) = f (M). Since M is nonsingular, f (M) is nonsinguar. By
hypothesis, f (M)/ f (K) is singular, so, f (K) ≤e f (M). Since f (N) ≪e f (M), f (K) = f (M). It follows that M = Ker f +K.
Thus K = M and so N ≪e M.

Corollary 1 Let M be an e-small quasi-Dedekind nonsingular R-module and a nonzero surjective f ∈ EndR(M). Suppose
that for each N ≤ M, M/ f (N) is singular. Then N ≪e M if and only if f (N) ≪e M.

Proof. Suppose that N ≪e M. Then by lemma 1, f (N) ≪e M. The converse follows directly from proposition 12.

Definition 6

1. A submodule N of an R-module M is called δ-small (N ≪δ M, for short) if whenever N + L = M and M/L is
singular then L = M.

2. An R-module M is called δ-Hollow if every proper submodule of M is δ-small in M.

115



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 3; 2018

3. A pair (P, f ) is a δ-projective cover of an R-module M, if P is a projective R-module and f : P −→ M is an
epimorphism and Ker f ≪δ P.

Remark 6

1. Every δ-small submodule is e-small but not conversely (see ( Zhou, D. X. & all (2000), P. 1052).

2. Obviously, every δ-hollow is e-small quasi-Dedekind but not conversely; for example Q as Z-module is e-small
quasi-Dedekind, but it is not δ-hollow.

Proposition 13 Let (P, f ) is a δ-projective cover of an R-module M such that P is δ-Hollow. Then M is e-small quasi-
Dedekind.

Proof. We have f : P −→ M is an epimorphism. Let g ∈ EndR(M) such that g , 0. f −1(Kerg) is a proper submodule of
P. Suppose that P is δ-Hollow, then f −1(Kerg) ≪δ P and by ( Zhou, Y.Q.(2000), Lemma 1.3), f ( f −1(Kerg)) ≪δ M. But
f ( f −1(Kerg)) = Kerg, then Kerg ≪e M. Hence M is e-small quasi-Dedekind.

Definition 7 A ring R is called δ-semiperfect if every simple R-module has projective δ-cover.

Recall that a module is M called weakly co-Hopfian if for any endomorphism f ∈ EndR(M), f (M) ≤e M.

Proposition 14 Let R be an artinian principal ideal ring such that every projective R-module is δ-hollow. Then every
weakly co-Hopfian R-module is e-small quasi-Dedekind.

Proof. Let M be a weakly co-Hopfian R-module. Since R is a artinian principal ideal ring, then by ( Barry, M.,& all
(2010), Therorem 3.8), M is finitely generated. Thus by ( Zhou, Y.Q.(2000), Theorem 3.6), M has a projective δ-cover
(P, f ) because R is δ-semiperfect. By hypothesis, P is δ-Hollow. So by proposition 13, M is e-small quasi-Dedekind.

Definition 8 An R-module M is called coretractable if for any proper submodule N of M, there exists a nonzero homo-
morphism f : M −→ M with f (N) = {0}, that is HomR(M/N,M) , {0}.
Proposition 15 Let M be a coretractable R-module such that for any
0 , f ∈ E, annE(Ker f ) ≤e E where E = EndR(M). Then M is e-small quasi-Dedekind.

Proof. Let f ∈ E such that f , 0. Let K be a proper essential submodule K of M. There exists 0 , g ∈ E with g(K) = {0}.
Since annE(Ker f ) ≤e E, there exists h ∈ E such that 0 , hg ∈ annE(Ker f ). Therefore, hg(Ker f + L) = {0} and hence
Ker f + K , M. Thus Ker f ≪e M and so M is e-small quasi-Dedekind.

Proposition 16 Let M be a nonzero coretractable R-module. If E is uniform as E-module, then M is e-small quasi-
Dedekind.

Proof. Let f ∈ E such that f , 0. Suppose that E is uniform. Since annE(Ker f ) , {0}, it is an essential ideal of E. By
proposition 15, Ker f ≪e M and so M is esmall-quasi-Dedekind.

Definition 9 Let R be a ring.

1. An element x ∈ R is left quasi-regular in case 1-x has a left inverse in R. Similarly x ∈ R is right quasi-regular in
case 1-x has a right inverse in R.

2. An ideal I of R is left quasi-regular in case each element of I is left quasi-regular.

Proposition 17 Let R be a ring such that every proper ideal of R is quasi-regular. Then R is an e-small quasi-Dedekind
R-module.

Proof. Let f ∈ End(R) such that f , 0. Let R = Ker f + J, with J ≤e R. Then there exists x ∈ Ker f and j ∈ J with
1=x + j. So j=1-x is inversible whence 1 ∈ J and J = R. Thus Ker f ≪e R and so R is e-small quasi-Dedekind.

Remark 7 Let R be a nonzero ring such that any ideal in R is free as an R-module. Then R is an e-small quasi-Dedekind
ring.
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