Modules Whose Nonzero Endomorphisms Have E-small Kernels

Abdoul Djibril DIALLO¹, Papa Cheikhou DIOP², Mamadou BARRY³

¹ Département de Mathématiques et Informatiques, Université Cheikh Anta Diop, Dakar, Sénégal

² Département de Mathématiques, Université de Thiès, Thiès, Sénégal

³ Département de Mathématiques et Informatiques, Université Cheikh Anta Diop, Dakar, Sénégal

Correspondence: Papa Cheikhou DIOP, Département de Mathématiques, UFR SET, Université de Thiès, Thiès, Sénégal.

Received: November 17, 2017 Accepted: November 29, 2017 Online Published: May 14, 2018

doi:10.5539/jmr.v10n3p111 URL: https://doi.org/10.5539/jmr.v10n3p111

Abstract

Let *R* be a commutative ring and *M* an unital *R*-module. A submodule *L* of *M* is called essential submodule of *M*, if $L \cap K \neq \{0\}$ for any nonzero submodule *K* of *M*. A submodule *N* of *M* is called e-small submodule of *M* if, for any essential submodule *L* of *M*, N + L = M implies L = M. An *R*-module *M* is called e-small quasi-Dedekind module if, for each $f \in End_R(M)$, $f \neq 0$ implies Kerf is e-small in *M*. In this paper we introduce the concept of e-small quasi-Dedekind modules as a generalisation of quasi-Dedekind modules, and give some of their properties and characterizations.

Keywords: Essential submodules, e-small submodules, e-small quasi-Dedekind modules

1. Introduction

Throughout all rings are associative, commutative with identity and all modules are unitary *R*-module. A submodule *L* of *M* is called essential submodule of *M*, if $L \cap K \neq \{0\}$ for any nonzero submodule *K* of *M*. (Zhou, D. X. & all (2011)) introduce and study the concept of e-small submodules, where a submodule *N* of *M* is called e-small submodule of *M* if, for any essential submodule *L* of *M*, N + L = M implies L = M. An *R*-module *M* is called e-small quasi-Dedekind module if, for each $f \in End_R(M)$, $f \neq 0$ implies Kerf is e-small in *M*. (Mijbass, A. S. (1997)) introduced and studied the concept of quasi-Dedekind module. In this paper we introduce and study the concept of e-small quasi-Dedekind as a generalization of quasi-Dedekind module. Also, we investigate the basic properties and characterizations of e-small quasi-Dedekind module. Finally we study the relations between e-small quasi-Dedekind modules and some classes of modules.

The notation $N \le M$ means that N is a submodule of M and $N \le^{\oplus} M$ denotes that N is a direct summand of M.

2. Preliminaries

Definition 1 Let M be an R-module and $N \leq M$.

- 1. *N* is called essential submodule of M ($N \leq_e M$, for short) if, $N \cap K \neq \{0\}$ for any nonzero submodule K of M.
- 2. N is called small submodule of M ($N \ll M$, for short) if, for any submodule L of M, N + L = M implies L = M
- 3. N is called e-small $N \ll_e M$, $(N \ll_e M, \text{ for short})$ if, for any essential submodule L of M, N + L = M implies L = M.

Remark 1 Each small submodule is e-small submodule. But the converse is not true in general for example: $N = \{\overline{0}, \overline{3}\}$ is a submodule of $\mathbb{Z}/6\mathbb{Z}$ as a \mathbb{Z} -module. N is e-small but N is not small.

Lemma 1 (Zhou, D. X. & all, Proposition 2.5)

- 1. Let N, K and L are submodules of an R-module M such that $N \subseteq K$, if $K \ll_e M$, then $N \ll_e M$ and $K/N \ll_e M/N$.
- 2. If $K \ll_e M$ and $f : M \longrightarrow M'$ is a homomorphism, then $f(K) \ll_e M'$. In particular, if $K \ll_e M \subseteq M'$, then $K \ll_e M'$.
- 3. Assume that $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$, then $K_1 \oplus K_2 \ll_e M_1 \oplus M_2$ if and only $K_1 \ll_e M_1$ and $K_2 \ll_e M_2$.

Lemma 2 (*Aidi*, *S*. *H*. & all, (2015), Lemma 2.8) Let *M* be an *R*-module, let $K \le N \le M$ be submodules of *M*. If $K \ll_e M$ and $N \le^{\oplus} M$, then $K \ll_e N$.

3. Some Properties Related to E-small Quasi-Dedekind Modules

Definition 2 An *R*-module *M* is called *e*-small quasi-Dedekind if for all $f \in End_R(M)$, $f \neq 0$ implies $Kerf \ll_e M$.

Example 1 Every semi-simple module is e-small quasi-Dedekind.

Remark 2 It is clear that every quasi-Dedekind *R*-module is an *e*-small quasi-Dedekind *R*-module. But the converse is not true in general, for example \mathbb{Z} as a \mathbb{Z} -module is *e*-small quasi-Dedekind but it is not quasi-Dedekind.

Remark 3

- 1. The epimorphic image of e-small quasi-Dedekind module is not necessary e-small quasi-Dedekind; for example \mathbb{Z} as a \mathbb{Z} -module is e-small quasi-Dedekind. Let $\pi : \mathbb{Z} \longrightarrow \mathbb{Z}/12\mathbb{Z}$, where π is the natural projection. $\mathbb{Z}/12\mathbb{Z}$ as a \mathbb{Z} -module is not e-small quasi-Dedekind.
- The direct sum of e-small quasi-Dedekind modules is not necessarily an e-small quasi-Dedekind module; for example each of Z/4Z and Z/3Z as Z-module is e-small quasi-Dedekind. But Z/4Z ⊕ Z/3Z ≅ Z/12Z is not an e-small quasi-Dedekind Z-module, since Z/12Z is not e-small quasi-Dedekind.

Proposition 1 Let M_1, M_2 be *R*-modules such that $M_1 \cong M_2$.

Then M_1 is an e-small quasi-Dedekind R-module if and only if M_2 is an e-small quasi-Dedekind R-module.

Proof. ⇒) Let $f \in End_R(M_2)$, $f \neq 0$. Since $M_1 \cong M_2$, there exists an isomorphism $g : M_1 \longrightarrow M_2$ and $g^{-1} : M_2 \longrightarrow M_1$. Let $h = g^{-1} \circ f \circ g \in End_R(M_1)$. It is clear that $h \neq 0$ and so $g(kerh) \ll_e M_2$ by lemma 1. On the other hand we have g(Kerh) = Kerf. Hence $Kerf \ll_e M_2$. So M is e-small quasi-Dedekind. (=) The proof of the converse is similarly.

Proposition 2 Every direct summand of an e-small quasi-Dedekind module is an e-small quasi-Dedekind module.

Proof. Let $M = N \oplus K$ such that M is an δ -small quasi-Dedekind R-module. Let $f : K \longrightarrow K$, $f \neq 0$. We have $h = i \circ f \circ p \in End_R(M)$, $h \neq 0$, where p is the natural projection and i is the inclusion mapping. Hence $Kerh \ll_e M$. But $Kerf \subseteq Kerh$, so by lemma 1, $Kerf \ll_e M$. On the other hand $Kerf \leq K$ implies $Kerf \ll_e K$ by lemma 2. Thus K is an e-small quasi-Dedekind R-module.

Proposition 3 Let M be an R-module and let $N, L \le M$ with M = N + L and $M/N \cap N$ e-small quasi-Dedekind. Then M/N and M/L are e-small quasi-Dedekind R-modules.

Proof. Since $M/N \cap L = (N/N \cap L) \oplus (L/N \cap L)$, by proposition 2, $N/N \cap L$ and $L/N \cap L$ are e-small quasi-Dedekind. But $N/N \cap L \cong M/L$ and $L/N \cap L \cong M/N$, so M/L and M/N are e-small quasi-Dedekind.

Definition 3 An *R*-module is *M* called *N*-*e*-small quasi-Dedekind if, for every $0 \neq \phi \in Hom_R(M, N)$, $Ker\phi \ll_e M$.

In view of the above definition, an *R*-module *M* is e-small quasi-Dedekind if and only if *M* is *M*-e-small quasi-Dedekind.

Theorem 1 Let M_1 and M_2 be two *R*-modules and let $M = M_1 \oplus M_2$. If *M* is *e*-small quasi-Dedekind, then M_i is M_j -*e*-small quasi-Dedekind for all i, j = 1, 2.

Proof. Suppose that $M = M_1 \oplus M_2$ is e-small quasi-Dedekind. Then, by proposition 2, M_1 and M_2 are e-small quasi-Dedekind. Thus M_1 is M_1 -e-small quasi-Dedekind and M_2 is M_2 -e-small quasi-Dedekind. Let $0 \neq f \in Hom_R(M_1, M_2)$. Then $h = i \circ f \circ p \in End_R(M)$, where p is the natural projection and i is the inclusion mapping. It is clear that $h \neq 0$. So *Kerh* $\ll_e M_1 \oplus M_2$, because $M = M_1 \oplus M_2$ is e-small quasi-Dedekind. On the other hand, we may assume that $Kerf \oplus \{0\} \subseteq Kerh$. Thus $Kerf \oplus \{0\} \ll_e M_1 \oplus M_2$. Then by lemma 1, $Kerf \ll_e M_1$ and so M_1 is M_2 -e-small quasi-Dedekind.

Theorem 2 Let M be an R-module. Then M is e-small quasi-Dedekind if and only if $Hom(M/N, M) = \{0\}$, for all $N \ll_e M$.

Proof. \Rightarrow) Suppose on the contrary that there exists $N \ll_e M$ such that $Hom(M/N, M) \neq \{0\}$. Then there exists $\varphi : M/N \longrightarrow M, \varphi \neq 0$. Hence $\varphi \circ \pi \in End_R(M)$, where π is the canonical projection. It is clear that $\varphi \circ \pi \neq 0$ and so $Kerf(\varphi \circ \pi) \ll_e M$. Since $N \subseteq Ker(\varphi \circ \pi), N \ll_e M$ by lemma 1. This is a contradiction.

⇐) Suppose that there exits $f \in End_R(M)$, $f \neq 0$ such that $Kerf \ll_e M$. Define $g : M/Kerf \longrightarrow M$ by g(m + Kerf) = f(m), for all $m \in M$. It is clear that $g \neq 0$. So $Hom(M/Kerf, M) \neq \{0\}$ which is a contradiction.

Remark 4 If M is an e-small quasi-Dedekind R-module, and $N \le M$. Then it is not necessary that M/N is an e-small quasi-Dedekind R-module; for example the \mathbb{Z} -module $M = \mathbb{Z}$ is e-small quasi-Dedekind. Let $N = 12\mathbb{Z} \le \mathbb{Z}$, then

 $M/N = \mathbb{Z}/12\mathbb{Z}$ is not an e-small quasi-Dedekind R-module.

Definition 4 Let M be an R-module, put $Z(M) = \{m \in M : ann_R(m) \leq_e R\}$. M is called nonsingular if $Z(M) = \{0\}$, and singular if Z(M) = M. The Goldie torsion submodule $Z_2(M)$ of M is defined by $Z(M/Z(M)) = Z_2(M)/Z(M)$. M is called Goldie torsion if $M = Z_2(M)$.

Proposition 4 Let M be an e-small quasi-Dedekind R-module such that M/U is semi-simple nonsingular for all $U \ll_e M$. Then M/N is an e-small quasi-Dedekind R-module, for all $N \leq M$.

Proof. Let $K/N \ll_e M/N$. So by lemma 1, $K \ll_e M$. Suppose that $Hom((M/N)/(K/N), M/N) \neq \{0\}$. Since $Hom((M/N)/(K/N), M/N) \cong Hom(M/K, M/N)$, there exists $f : M/K \longrightarrow M/N$ such that $f \neq 0$. Since M/K is semisimple nonsingular, so by (Lam T.Y(1999), Exer. 12A.), there exists $g : M/K \longrightarrow M$ such that $\pi \circ g = f$, where π is the canonical projection. Hence $\pi \circ g(M/K) = f(M/K) \neq 0$, so $g \neq 0$. But $g \in Hom(M/K, M)$ and $K \ll_e M$. Thus $Hom(M/K, M) \neq \{0\}$ and $K \ll_e M$, which is a contradiction. Thus M/N is an e-small quasi-Dedekind *R*-module.

Proposition 5 Let M be an R-module. The following statements are equivalent:

- 1. M is e-small quasi-Dedekind.
- 2. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that f(N) = f(M), then N = Img for some $g^2 = g \in End_R(M)$.
- 3. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that Kerf + N = M, then there exist a unique complete set (g, g_1) of orthogonal idempotents in $End_R(M)$ and $N_1 \leq M$ with N = Mg and $N_1 = Mg_1$.

Proof. 1) \Rightarrow 2) Suppose that *M* is δ -small quasi-Dedekind. Let $0 \neq f \in End_R(M)$. Suppose that there exists $N \leq M$ such that f(N) = f(M). For any complement *L* to *N* in *M*, we have $N \oplus L \leq_e M$. It is clear that N + L + Kerf = M. So $N \oplus L = M$, because *M* is e-small quasi-Dedekind. So there exists $g^2 = g \in End_R(M)$ with N = Img.

2) \Rightarrow 3) Let $0 \neq f \in End_R(M)$. Suppose that there exists $N \leq M$ such that Kerf + N = M. Then f(N) = f(M). So, by 2) and (Anderson, F.W., & all (1973), Corollary 5.8 and Corollary 6.20), the result is obtained.

3) \Rightarrow 1) Let $0 \neq f \in End_R(M)$. Let Kerf + N = M where $N \leq_e M$. By 3) and (Anderson, F.W., & all (1973), Corollary 6.20), $N \leq^{\oplus} M$. Thus M = N and so M is e-small quasi-Dedekind.

Recall that a submodule N of an R-module M is called fully invariant if $f(N) \subseteq N$ for any $f \in End_R(M)$. An idempotent e in a ring R is called left semicentral if xe = exe for each $x \in R$. N is a closed submodule of M if N has no proper essential extension inside M.

Proposition 6 Let M be an R-module. Then the following conditions are equivalent:

- 1. M is e-small quasi-Dedekind.
- 2. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that f(N) = f(M), then N is closed in M.

Proof. 1) \Rightarrow 2) By proposition 5, $N \leq^{\oplus} M$. So N is closed. 2) \Rightarrow 1) Let $0 \neq f \in End_R(M)$. Let Kerf + N = M where $N \leq_e M$. Then f(N) = f(M). By 2) N is closed in M. Thus M = N and so M is e-small quasi-Dedekind.

Proposition 7 Let M an R-module such that for any $N \leq M$, $Z_2(M) \subseteq N$. Then the following statements are equivalent:

- 1. *M* is e-small quasi-Dedekind.
- 2. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that Kerf + N = M, then M/N is nonsingular.
- 3. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that Kerf + N = M, then N is closed in M.

Proof. 1) \Rightarrow 2) Let $0 \neq f \in End_R(M)$. Suppose that there exists $N \leq M$ such that f(N) = f(M). By proposition 6, *N* is closed in *M*. By our assumption,

 $Z_2(M) \subseteq N$. So by (Asgari, S. & all(2012), Proposition 1.2), M/N is nonsingular.

2) \Rightarrow 3). Let $0 \neq f \in End_R(M)$. Suppose that there exists $N \leq M$ with Kerf + N = M. Then f(N) = f(M). By 2), M/N is nonsingular. Hence by (Asgari, S. & all(2012), Proposition 1.2), N is closed in M. 3) \Rightarrow 1) Follows from proposition 6.

Proposition 8 Let *M* be an e-small quasi-Dedekind *R*-module such that for any nonzero $f \in End_R(M)$, there exists $N \leq M$ with f(N) = f(M). Then the following assertions are verified:

- 1. For any fully invariant submodule $L \leq M$, N + L is fully invariant in M if and only if $g_1End(M)N \subseteq L$ for some $g_1^2 = g_1 \in End_R(M)$.
- 2. N is fully invariant in M if only if there exists $g^2 = g \in End_R(M)$ with g semicentral.
- 3. There exists $N' \leq M$ such that N is a fully invariant submodule of M if and only if $Hom_R(N, N') = \{0\}$.
- 4. There exists an epimorphism $g \in Hom_R(M, N)$ and a monomorphism $h \in Hom_R(N, M)$ such that $M = Kerg \oplus Imh$.
- 5. $N = eE(M) \cap M$ for some $e^2 = e \in End_R(E(M))$.

Proof. Since *M* is e-small quasi-Dedekind, by proposition 5, $N \leq^{\oplus} M$. Thus N = gM for some $g^2 = g \in End_R(M)$. It is clear that $g_1 = (1 - g)$ is an idempotent in $End_R(M)$.

- 1. \Rightarrow) Let $x \in g_1 End(M)g$ and $m \in M$. Then $xm = xgm \in gM + L = N + L$. On the other hand we have $xm = g_1 xm \in g_1L \leq L$.
 - $(\Leftarrow \text{Let } s \in End_R(M). \text{ Then } s(gM) = (gs + g_1s)gM \subseteq gM + g_1End_R(M)gM \subseteq gM + L.$
- 2. ⇒) Let $s \in End_R(M)$ and $m \in M$. By 1), N = gM for some $g^2 = g \in End_R(M)$. Then sgm = gm' for some $m' \in M$. It follows that $gsgm = g^2m' = gm' = smg$. Hence g is semicentral. (\Leftarrow Let $s \in End_R(M)$ and $m \in M$. Thus $sgm = gsgm \in gM$ and so N is fully invariant in M.
- 3. Since $N \leq^{\oplus} M$, there exists $N' \leq M$ with $M = N \oplus N'$. In this case, it is well know that N is a fully invariant submodule of M if and only if $Hom_R(N, N') = \{0\}$.
- 4. Since $N \leq^{\oplus} M$, there exists an epimorphism $g \in Hom_R(M, N)$ and a homomorphism $h \in Hom_R(N, M)$ such that $g \circ h = 1_N$. It follows that *h* is a monomorphism. It is clear that *hg* an indempotent and so $M = Kerg \oplus Imh$.
- 5. Since $N \leq^{\oplus} M$, N is a closed submodule of M. Since $N \subseteq M \subseteq E(M)$, E(M) contains a copy of E(N). Thus $N \leq_e E(N) \cap M$ implies that $N = E(N) \cap M$. Since E(N) is injective, E(N) = eE(M) for some $e^2 = e \in End_R(E(M))$. So the result is obtained.

Proposition 9 Let M be an e-small quasi-Dedekind R-module such that for any nonzero $f \in End_R(M)$, there exists $N \leq M$ with f(N) = f(M). Let L be a fully invariant submodule of M such that $L \leq_e N$. Then the following assertions are verified:

- 1. $g_1End_R(M)N \subseteq Z(M)$ for some $g_1^2 = g_1 \in End_R(M)$.
- 2. N + Z(M) is fully invariant in M.
- 3. If $Z(M) \subseteq N$, then N is fully invariant. Moreover, if $L \leq_e K$, then $K \subseteq N$. In particular, $Z_2(M) \subseteq N$.

Proof.

- 1. We have N = gM for some $g^2 = g \in End_R(M)$. Then $g_1 = (1 g)$ is an idempotent in $End_R(M)$. Let $m \in M$. Then $gmI \subseteq L$ for some $I \leq_e R$. Thus $g_1End_R(M)gmI \subseteq N \cap g_1M = \{0\}$. It follows that $g_1End_R(M)N \subseteq Z(M)$.
- 2. Result from (1) and proposition 8 (1).
- 3. By (2), N is a fully invariant submodule of M. Let $k \in K$. Thus $kI \subseteq L$ for some $I \leq_e R$. So $g_1k \in Z(M) \subseteq N$. On the other hand $k = gk + g_1k \in N$. Thus $K \subseteq N$.

Proposition 10 Let M be a nonsingular R-module. Then the following conditions are equivalent:

- 1. M is e-small quasi-Dedekind.
- 2. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that f(N) = f(M), then $N \leq^{\oplus} M$.
- 3. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that Kerf + N = M and $((N + Z_2(M))/Z_2(M)) \leq_e M/Z_2(M)$, then M = N.

Proof.

1) \Rightarrow 2) Let $0 \neq f \in End_R(M)$. Suppose that there exists $N \leq M$ such that f(N) = f(M). Then the result follows directly from proposition 5.

2) \Rightarrow 3) Let $0 \neq f \in End_R(M)$. Suppose that there exists $N \leq M$ with

Kerf + N = M. Then f(N) = f(M) and by 2), there exists $L \le M$ such that $M = N \oplus L$. By hypothesis, $((N + Z_2(M))/Z_2(M)) \le M/Z_2(M)$. Thus by (Asgari, S. & all(2012), Proposition 1.1), M/N is Goldie torsion. On the other hand $M = N \oplus L$ implies that $M/N \cong L$ is Goldie torsion. It follows that $L = \{0\}$. This implies that M = N.

3) \Rightarrow 1) Let *M* an *R*-module and a nonzero $f \in End_R(M)$ such that Kerf + N = M, where $N \leq_e M$. We have M/N is singular and so Goldie torsion. Thus by 3) and (Asgari, S. & all(2012), Proposition 1.1), M = N. So *M* is e-small quasi-Dedekind.

Definition 5

- 1. An *R*-module *M* is called prime if $Ann_R(M) = Ann_R(N)$ for each $0 \neq N \leq M$.
- 2. An *R*-module *M* is called faithful if $Ann_R(M) = \{0\}$.

Proposition 11 Let M be a prime faithful R-module. Then the following conditions are equivalent:

- 1. *M* is e-small quasi-Dedekind.
- 2. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that f(N) = f(M), then $N \leq^{\oplus} M$.
- 3. For any nonzero $f \in End_R(M)$, if there exists $N \leq M$ such that Kerf + N = M and $(N + Z_2(M)) \leq_e M$, then M = N.

Proof. Suppose that *M* is prime. Then $Ann_R(M)$ is a prime ideal of *R*. Also *M* is a torsion-free module *R*-module, where $\overline{R} = R/Ann_R(M)$. We have $\overline{R} = R/Ann_R(M) \cong R$, because *M* is faithful. Hence *M* is a torsion-free module over a integral domain. Thus by (Lam, T. Y. (1999), P.247), *M* is nonsingular. Thus the result follows from proposition 10 and (Asgari, S. & all(2012), Proposition 1.1).

Remark 5 Let $N \leq M$ and $f \in End_R(M)$, $f \neq 0$. If $f(N) \ll_e f(M)$, then it is not necessarily that $N \ll_e M$ for example: let $\mathbb{Z}/12\mathbb{Z}$ as \mathbb{Z} -module, and let $N = \langle \overline{3} \rangle \leq \mathbb{Z}/12\mathbb{Z}$. Let $f = 4\overline{x} \in End_{\mathbb{Z}}(\mathbb{Z}/12\mathbb{Z})$. It is clear that $f \neq 0$ and $f(N) = f(\langle \overline{3} \rangle) = \{\overline{0}\} \ll_e f(\mathbb{Z}/12\mathbb{Z}) = f(M)$, but $\langle \overline{3} \rangle \ll_e \mathbb{Z}/12\mathbb{Z}$.

Proposition 12 Let M be an e-small quasi-Dedekind nonsingular R-module. Let a nonzeo $f \in End_R(M)$ such that for each $N \leq M$, f(M)/f(N) is singular. If $f(N) \ll_e f(M)$, then $N \ll_e M$.

Proof. Let N + K = M where $K \leq_e M$. Then f(N) + f(K) = f(M). Since M is nonsingular, f(M) is nonsingular. By hypothesis, f(M)/f(K) is singular, so, $f(K) \leq_e f(M)$. Since $f(N) \ll_e f(M)$, f(K) = f(M). It follows that M = Kerf + K. Thus K = M and so $N \ll_e M$.

Corollary 1 Let M be an e-small quasi-Dedekind nonsingular R-module and a nonzero surjective $f \in End_R(M)$. Suppose that for each $N \leq M$, M/f(N) is singular. Then $N \ll_e M$ if and only if $f(N) \ll_e M$.

Proof. Suppose that $N \ll_e M$. Then by lemma 1, $f(N) \ll_e M$. The converse follows directly from proposition 12.

Definition 6

- 1. A submodule N of an R-module M is called δ -small (N $\ll_{\delta} M$, for short) if whenever N + L = M and M/L is singular then L = M.
- 2. An *R*-module *M* is called δ -Hollow if every proper submodule of *M* is δ -small in *M*.

3. A pair (P, f) is a δ -projective cover of an R-module M, if P is a projective R-module and $f : P \longrightarrow M$ is an epimorphism and Kerf $\ll_{\delta} P$.

Remark 6

- 1. Every δ -small submodule is e-small but not conversely (see (Zhou, D. X. & all (2000), P. 1052).
- 2. Obviously, every δ -hollow is e-small quasi-Dedekind but not conversely; for example \mathbb{Q} as \mathbb{Z} -module is e-small quasi-Dedekind, but it is not δ -hollow.

Proposition 13 Let (P, f) is a δ -projective cover of an *R*-module *M* such that *P* is δ -Hollow. Then *M* is *e*-small quasi-Dedekind.

Proof. We have $f : P \longrightarrow M$ is an epimorphism. Let $g \in End_R(M)$ such that $g \neq 0$. $f^{-1}(Kerg)$ is a proper submodule of P. Suppose that P is δ -Hollow, then $f^{-1}(Kerg) \ll_{\delta} P$ and by (Zhou, Y.Q.(2000), Lemma 1.3), $f(f^{-1}(Kerg)) \ll_{\delta} M$. But $f(f^{-1}(Kerg)) = Kerg$, then $Kerg \ll_e M$. Hence M is e-small quasi-Dedekind.

Definition 7 A ring R is called δ -semiperfect if every simple R-module has projective δ -cover.

Recall that a module is *M* called weakly co-Hopfian if for any endomorphism $f \in End_R(M)$, $f(M) \leq_e M$.

Proposition 14 Let *R* be an artinian principal ideal ring such that every projective *R*-module is δ -hollow. Then every weakly co-Hopfian *R*-module is *e*-small quasi-Dedekind.

Proof. Let *M* be a weakly co-Hopfian *R*-module. Since *R* is a artinian principal ideal ring, then by (Barry, M.,& all (2010), Theorem 3.8), *M* is finitely generated. Thus by (Zhou, Y.Q.(2000), Theorem 3.6), *M* has a projective δ -cover (*P*, *f*) because *R* is δ -semiperfect. By hypothesis, *P* is δ -Hollow. So by proposition 13, *M* is e-small quasi-Dedekind.

Definition 8 An *R*-module *M* is called coretractable if for any proper submodule *N* of *M*, there exists a nonzero homomorphism $f : M \longrightarrow M$ with $f(N) = \{0\}$, that is $Hom_R(M/N, M) \neq \{0\}$.

Proposition 15 Let *M* be a coretractable *R*-module such that for any $0 \neq f \in E$, $ann_E(Kerf) \leq_e E$ where $E = End_R(M)$. Then *M* is e-small quasi-Dedekind.

Proof. Let $f \in E$ such that $f \neq 0$. Let K be a proper essential submodule K of M. There exists $0 \neq g \in E$ with $g(K) = \{0\}$. Since $ann_E(Kerf) \leq_e E$, there exists $h \in E$ such that $0 \neq hg \in ann_E(Kerf)$. Therefore, $hg(Kerf + L) = \{0\}$ and hence $Kerf + K \neq M$. Thus $Kerf \ll_e M$ and so M is e-small quasi-Dedekind.

Proposition 16 Let M be a nonzero coretractable R-module. If E is uniform as E-module, then M is e-small quasi-Dedekind.

Proof. Let $f \in E$ such that $f \neq 0$. Suppose that *E* is uniform. Since $ann_E(Kerf) \neq \{0\}$, it is an essential ideal of *E*. By proposition 15, $Kerf \ll_e M$ and so *M* is esmall-quasi-Dedekind.

Definition 9 Let *R* be a ring.

- 1. An element $x \in R$ is left quasi-regular in case 1-x has a left inverse in R. Similarly $x \in R$ is right quasi-regular in case 1-x has a right inverse in R.
- 2. An ideal I of R is left quasi-regular in case each element of I is left quasi-regular.

Proposition 17 Let *R* be a ring such that every proper ideal of *R* is quasi-regular. Then *R* is an e-small quasi-Dedekind *R*-module.

Proof. Let $f \in End(R)$ such that $f \neq 0$. Let R = Kerf + J, with $J \leq_e R$. Then there exists $x \in Kerf$ and $j \in J$ with 1=x+j. So j=1-x is inversible whence $1 \in J$ and J = R. Thus $Kerf \ll_e R$ and so R is e-small quasi-Dedekind.

Remark 7 Let *R* be a nonzero ring such that any ideal in *R* is free as an *R*-module. Then *R* is an *e*-small quasi-Dedekind ring.

References

- Aidi, S. H., & Hadi, I. M. A. (2015). On e-Hollow modules. International Journal of Advanced Scientific and Technical Research, 5(3), May-June.
- Amini, B., Ershad, M., & Sharif, H. (2009). Coretractable modules. J Aust Math Soc, 86, 289-304.

Anderson, F. W., & Fuller, K. R. (1973). Rings and category of modules, New York Springer-Verlag, Berlin.

- Asgari, S., & Haghany, A. (2012). Generalization of t-extending modules relative to fully invariant submodules. *J. Korean Math. Soc.*, 49(3), 503-514.
- Barry, M., & Diop, P. C. (2010). Some properties related to commutative weakly FGI-rings. *JP Journal of Algebra*, *Number theory and applicatio*, *19*, 141-153.
- Ghawi, T. Y. (2010). Some Generalization of Quasi-Dedekind Modules, M. Sc Thesis, College of Education Ibn-AL-Haitham, University of Baghdad.

Kasch, F. (1982). Modules and Rings, Academic press, London.

- Lam, T. Y. (1999). Lectures on modules and rings, G.T.M.(189), Springer-Verlag, Berlin-Heidelber, New York.
- Mijbass, A. S. (1997). Quasi-Dedekind Modules, Ph. D. Thesis, College of Science University of Baghdad.
- Zhou, Y. Q. (2000). Generalization of perfect, semiperfect and semiregular rings. Algebra Collog. 7(3), 305-318.
- Zhou, D. X., & Zhang, X. R. (2011). Small-Essential submodules and Morita Duality. *Southeast Asian Bull. Math.*, 35, 1051-1062.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).