Convergence Properties of Extended Newton-type Iteration Method for Generalized Equations
- M. Khaton
- M. Rashid
- M. Hossain
Abstract
In this paper, we introduce and study the extended Newton-type method for solving generalized equation $0\in f(x)+g(x)+\mathcal F(x)$, where $f:\Omega\subseteq\mathcal X\to \mathcal Y$ is Fr\'{e}chet differentiable in a neighborhood $\Omega$ of a point $\bar{x}$ in $\mathcal X$, $g:\Omega\subseteq \mathcal X\to \mathcal Y$ is linear and differentiable at a point $\bar{x}$, and $\mathcal F$ is a set-valued mapping with closed graph acting in Banach spaces $\mathcal X$ and $\mathcal Y$. Semilocal and local convergence of the extended Newton-type method are analyzed.- Full Text: PDF
- DOI:10.5539/jmr.v10n4p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org