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Abstract

In this paper, we introduce and study the extended Newton-type method for solving generalized equation 0 ∈ f (x)+g(x)+
F (x), where f : Ω ⊆ X → Y is Fréchet differentiable in a neighborhood Ω of a point x̄ in X, g : Ω ⊆ X → Y is linear and
differentiable at a point x̄, and F is a set-valued mapping with closed graph acting in Banach spaces X and Y. Semilocal
and local convergence of the extended Newton-type method are analyzed.
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1. Introduction

In this study we are concerned with the problem of approximating a solution of a generalized equations. Let X and Y be
Banach spaces and Ω ⊆ X. Let f : Ω → Y be a Fréchet differentiable function and its Fréchet derivative is denoted by
∇ f , g : Ω → Y be a linear and differentiable function at x but may not differentiable in a neighborhood Ω of x and its
first order divided difference on the points x and y is denoted by [x, y; g] and F : X ⇒ 2Y be a set-valued mapping with
closed graph. We consider here a generalized equation problem to approximate a point x ∈ Ω satisfying

0 ∈ f (x) + g(x) + F (x). (1)

For solving (1), Alexis & Pietrus (2008) introduced the following Newton-like method:

0 ∈ f (xk) + g(xk) + (∇ f (xk) + [2xk+1 − xk, xk; g])(xk+1 − xk)
+ F (xk+1), for k = 0, 1, . . . (2)

and obtained local convergence of this method. In particular, the authors obtained superlinear and quadratic convergence
of the method (2) when ∇ f is Lipschitz continuous. To solve (1), Rashid, Wang & Li (2012) established local convergence
results for the method (2) under the weaker conditions than Alexis & Pietrus (2008). Specifically, Rashid, Wang & Li
(2012) extended the results by fixing a gap in the proof of Theorem 1 in Alexis & Pietrus (2008).

Moreover, for solving (1), Hilout, Alexis, & Piétrus (2006) considered the following sequence
x0 and x1 are given starting points
yk = αxk + (1 − α)xk−1; α is fixed in (0, 1)
0 ∈ f (xk) + [yk, xk; f ](xk+1 − xk) + F (xk+1)

and they proved the convergence of this method is superlinear when f is only continuous and differentiable at x∗. Fur-
thermore, it should be mentioned that Argyros (2004) has studied local as well as semilocal convergence analysis for
two-point Newton-like methods in a Banach space setting under very general Lipschitz type conditions for solving (1) in
the case when F = {0}. When g = 0, this study has been extended by Rashid (2017a, 2017b, 2018).

Let x ∈ X and the subset of X, denoted by N(x), is defined by

N(x) =
{
d ∈ X : 0 ∈ f (x) + g(x) + (∇ f (x) + [x + d, x; g])d + F (x + d)

}
.
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Argyros & Hilout (2008) associated the following Newton-like method (See Algorithm 1) for solving the generalized
equation (1):

Algorithm 1 (The Newton-like Method)
Step 1. Select x0 ∈ X, and put k := 0.
Step 2. If 0 ∈ N(xk), then stop; otherwise, go to Step 3.
Step 3. If 0 < N(xk), choose dk such that dk ∈ N(xk).
Step 4. Set xk+1 := xk + dk.
Step 5. Replace k by k + 1 and go to Step 2.

Argyros & Hilout (2008) obtained the quadratic convergence of the sequence generated by Algorithm 1 when ∇ f is
Lipschitz continuous.

Under some suitable conditions around a solution x∗ of the generalized equation (1), Argyros & Hilout (2008) showed in
their Theorem 4.1 that there exists a neighborhood U of x∗ such that, for any point in U, there exists a sequence generated
by Algorithm 1 which is quadratically convergent to the solution x∗. This reflects that the convergence result, established
in Argyros & Hilout (2008), guarantees the existence of a convergent sequence. Therefore, for any initial point near to a
solution, the sequences generated by Algorithm 1 are not uniquely defined and not every generated sequence is convergent.
Hence, in view of numerical computation, this kind of methods are not convenient in practical application. This difficulties
inspired us to introduce a method ”so-called” extended Newton-type (EN-type) method. Thus, we propose the following
EN-type method:

Algorithm 2 (The EN-type Method))
Step 1. Select η ∈ [1,∞), x0 ∈ X, and put k := 0.
Step 2. If 0 ∈ N(xk), then stop; otherwise, go to Step 3.
Step 3. If 0 < N(xk), choose dk such that dk ∈ N(xk) and

∥dk∥ ≤ η dist (0,N(xk)).

Step 4. Set xk+1 := xk + dk.
Step 5. Replace k by k + 1 and go to Step 2.

The difference between Algorithms 1 and 2 is that Algorithm 2 generates at least one sequence and every generated
sequence is convergent but this does not happen for Algorithm 1. Since the sequences generated by Algorithm 1 are not
uniquely defined, in comparison with Algorithms 1 and 2, we can infer that Algorithm 2 is more precise than Algorithm
1 in numerical computation.

If the set N(x) is replaced by the set

D(x) :=
{
d ∈ X : 0 ∈ f (x) + g(x) + (∇ f (x) + [2d + x, x; g])d + F (x + d)

}
,

then the Algorithm 2 reduces to the same algorithm corresponding one given by Rashid (2014).

There have been studied many fruitful works on semilocal convergence analysis for the Gauss-Newton method in the case
when F = {0} and g = 0 (see Dedieu & Kim (2002); Dedieu & Shub (2000); Xu & Li (2008), for more details) or when
F = C and g = 0 (see Li & Ng (2007), for details).

In the case when g = 0, Rashid, Yu, Li & Wu (2013) introduced Gauss-Newton-type method to solve the generalized
equation (1) and established its semilocal convergence. Moreover, in the same case, Rashid introduced different kinds of
methods for solving (1) and obtained their semilocal and local convergence; see for examples (Rashid (2016); Rashid &
Sardar (2015); Rashid (2015)). However, in our best knowledge, there is no other study on semilocal convergence analysis
discovered for the Algorithm 1.

The purpose of this study is to analyze the semilocal convergence of the extended Newton-type method defined by Algo-
rithm 2. The main tool is the Lipschitz-like property of set-valued mappings, which was introduced by Aubin (1984). in
the context of nonsmooth analysis and studied by many mathematicians (see for example, Alexis & Piétrus (2008); Argy-
ros & Hilout (2008); Dontchev (1996a); Hilout, Alexis,& Piétrus (2006); Piétrus (2000b)) and the references therein. The
main results are the convergence criteria, established in Section 3, which, based on the attraction region around the initial
point, provide some sufficient conditions ensuring the convergence to a solution of any sequence generated by Algorithm
2. As a result, local convergence results for the extended Newton-type method are obtained.
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This paper is organized as follows: In section 2, we recall a few necessary preliminary results and also recall a fixed-point
theorem which has been proved by Dontchev & Hager (1994). This fixed-point theorem is the main tool to prove the
existence of the sequence generated by Algorithm 2. In section 3, we consider the extended Newton-type method as
well as the concept of Lipschitz-like property to show the existence and the convergence of the sequence generated by
Algorithm 2. In the last section, a summary of the major results of this study are given.

2. Preliminaries

In this section we give some notations and collect some results that will be helpful to prove our main results. Throughout
the whole study, suppose that X andY are two real or complex Banach spaces. Let x ∈ X. Let B(x, r) = {u ∈ X : ∥u− x∥ ≤
r} be denote the closed ball centered at x with radius r > 0. Let F : X ⇒ 2Y be a set-valued mapping with closed graph.
The domain of F , denoted by domF , is defined by

domF := {x ∈ X : F (x) , ∅}.

The inverse of F , denoted by F −1, is defined by

F −1(y) := {x ∈ X : y ∈ F (x)} for each y ∈ Y.

and the graph of F , denoted by gphF , is defined by

gphF := {(x, y) ∈ X × Y : y ∈ F (x)}.

Let A, B ⊆ X. The distance from a point x ∈ X to a set A is defined by

dist(x, A) := inf
a∈A
∥x − a∥.

Moreover, the excess from the set A to the set B is defined by

e(B, A) := sup
b∈B
{dist(b, A)}.

The space of linear operators from X to Y is denoted by L(X,Y) and the norms are denoted by ∥ · ∥.
Now, we recall some definitions, results and then state the Banach fixed point theorem. We begin with the definition of
the first order divided difference operators. The notion of divided differences of nonlinear operators is given by Argyros
(2007), which is given below:

Definition 2.1. Let g ∈ L(X,Y). Then g is said to have the first order divided difference on the points x and y inX (x , y)
if the following properties hold:

(a) [x, y; g](y − x) = g(y) − g(x) for x , y;

(b) if g is Fréchet differentiable at x ∈ X, then [x, x; g] = ∇g(x).

Recall from Rashid, Yu, Li & Wu (2013), the notions of pseudo-Lipschitz and Lipchitz-like set-valued mappings. These
notions were introduced by Aubin (see, Aubin (1984); Aubin & Frankowska (1990), for more details) and have been
studied extensively.

Definition 2.2. Let Γ : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gphΓ. Let rx̄, rȳ and µ are positive constants.
Then Γ is said to be

(a) Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant µ if the following inequality holds:

e(Γ(y1) ∩ B(x̄, rx̄),Γ(y2)) ≤ µ∥y1 − y2∥ for every y1, y2 ∈ B(ȳ, rȳ).

(b) pseudo-Lipschitz around (ȳ, x̄) if there exist constants a > 0, b > 0 and µ′ > 0 such that Γ is Lipschitz-like on B(ȳ, b)
relative to B(x̄, a) with constant µ′.

Remark 2.1. The set-valued mapping Γ is Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant µ > 0, which is
equivalent to the following statement: if for every y1, y2 ∈ B(ȳ, rȳ) and for every x1 ∈ Γ(y1) ∩ B(x̄, rx̄), there exists
x2 ∈ Γ(y2) such that

∥x1 − x2∥ ≤ µ∥y1 − y2∥.

3



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 4; 2018

The following lemma is due to Lemma 2.1 of Rashid, Yu, Li & Wu (2013). This lemma is useful and its proof is a little
bit similar to that for Theorem 1.49(i) of Mordukhovich (2006).

Lemma 2.1. Let Γ : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gph Γ. Assume that Γ is Lipschitz-like on B(ȳ, rȳ)
relative to B(x̄, rx̄) with constant µ. Then

dist (x,Γ(y)) ≤ µ dist(y,Γ−1(x))

holds for every x ∈ B(x̄, rx̄) and y ∈ B(ȳ, rȳ

3 ) satisfying dist(y,Γ−1(x)) ≤
rȳ

3
.

We close this section with the following lemma. This lemma is a fixed point statement which has been proved by Dontchev
& Hager (1994) and employing the standard iterative concept for contracting mapping. This lemma will be used to prove
the existence of the sequence generated by Algorithm 2.

Lemma 2.2. Let Φ : X⇒ 2X be a set-valued mapping. Let x∗ ∈ X, r > 0 and 0 < λ < 1 be such that

dist(x∗,Φ(x∗)) < r(1 − λ) (3)

and
e(Φ(x1) ∩ B(x∗, r),Φ(x2)) ≤ λ∥x1 − x2∥ for all x1, x2 ∈ B(x∗, r). (4)

Then Φ has a fixed point in B(x∗, r), that is, there exists x ∈ B(x∗, r) such that x ∈ Φ(x). Moreover, if Φ is single-valued,
then the fixed point of Φ in B(x∗, r) is unique i.e. x = Φ(x).

The previous lemma is a generalization of a fixed point theorem which has been given by Ioffe & Tikhomirov (1979),
where in assertion (b) the excess e is replaced by Hausdorff distance.

3. Convergence analysis of EN-type Method

Let Ω be a subset of X. Suppose that f : Ω → Y is a Fréchet differentiable function on a neighborhood Ω of x̄ with
its derivative denoted by ∇ f , g : Ω → Y is linear and differentiable at x̄ and let F : X ⇒ 2Y be a set-valued mapping
with closed graph. This section is devoted to prove the existence and convergence of the sequences generated by extended
Newton-type method, defined by the Algorithm 2, on a neighborhood Ω of a point x̄.

Fix x ∈ X. Then for every x ∈ X, we have that

g(x) + [x + d, x; g]d = g(x) − [x + d, x; g](x − (x + d))
= g(x) − (g(x) − g(x + d)) = g(x + d). (5)

Therefore, we define the mapping Gx by

Gx(·) := f (x) + g(·) + ∇ f (x)(· − x) + F (·).

It follows, from the construction of N(x), that

N(x) =
{
d ∈ X : 0 ∈ Gx(x + d)

}
.

Moreover, for any z ∈ X and y ∈ Y, we have the following equivalence:

z ∈ G−1
x (y) if and only if y ∈ f (x) + g(z) + ∇ f (x)(z − x) + F (z). (6)

In particular, let (x̄, ȳ) ∈ gphGx̄. Then, the closed graphness of Gx̄ imply that

x̄ ∈ G−1
x̄ (ȳ). (7)

The following result establishes the equivalence between ( f + g+F )−1 and G−1
x̄ . This result is the modification of Rashid

& Sardar (2015).

Lemma 3.1. Let (x̄, ȳ) ∈ gph ( f + g + F ). Suppose that f is Fréchet differentiable in an open neighborhood Ω of x̄ and
∇ f is continuous at x̄. Assume that g is Fréchet differentiable at x̄ and admits first order divided difference. Then the
following are equivalent:

(i) The mapping ( f + g + F )−1 is pseudo-Lipschitz at (ȳ, x̄);
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(ii) The mapping G−1
x̄ is pseudo-Lipschitz at (ȳ, x̄).

Proof. Define a function h : X → Y by

h(x) := − f (x) + f (x̄) + ∇ f (x̄)(x − x̄).

The proof is similar to that of Rashid & Sardar (2015), because the proof does not depend on the property of g. �

For our convenience, let rx̄ > 0, rȳ > 0 and B(x̄, rx̄) ⊆ Ω ∩ domF . Assume that the function g is Fréchet differentiable at
x̄ and admits a first order divided difference, that is, there exist ν > 0 such that for all x, y, u, v ∈ B(x̄, rx̄) (x , y, u , v),

∥[x, y; g] − [u, v; g]∥ ≤ ν(∥x − u∥ + ∥y − v∥),

and the mapping G−1
x̄ is Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M, that is,

e(G−1
x̄ (y1) ∩ B(x̄, rx̄),G−1

x̄ (y2)) ≤ M∥y1 − y2∥ for any y1, y2 ∈ B(ȳ, rȳ). (8)

Moreover, the closed graph property of Gx̄ implies that f + g + F is continuous at x̄ for ȳ i.e. the following condition is
hold:

lim
x→x̄

dist
(
ȳ, f (x) + g(x) + F (x)

)
= 0. (9)

Let ε > 0 and write

r̄ := min
{
rȳ − 2εrx̄,

rx̄(1 − Mε)
4M

}
. (10)

Then

r̄ > 0 if and only if ε < min
{ rȳ

2rx̄
,

1
M

}
. (11)

The following lemma plays a crucial role for convergence analysis of the extended Newton-type method. The proof is a
refinement of Lemma 3.1 in Rashid, Yu, Li & Wu (2013).

Lemma 3.2. Suppose that G−1
x̄ is Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M. Let ε be defined by (11)

and x ∈ B(x̄, rx̄
2 ). Assume that ∇ f is continuous on B((x̄, rx̄

2 ). Let r̄ be defined by (10) such that (11) is true. Then G−1
x is

Lipschitz-like on B(ȳ, r̄) relative to B(x̄, rx̄
2 ) with constant M

1−Mε , that is,

e(G−1
x (y1) ∩ B(x̄,

rx̄

2
),G−1

x (y2)) ≤ M
1 − Mε

∥y1 − y2∥ for any y1, y2 ∈ B(ȳ, r̄).

Proof. Let

y1, y2 ∈ B(ȳ, r̄) and x′ ∈ G−1
x (y1) ∩ B(x̄,

rx̄

2
). (12)

It is enough to show that there exist x′′ ∈ G−1
x (y2) such that

∥x′ − x′′∥ ≤ M
1 − Mε

∥y1 − y2∥.

To this finish , we will verify that there exists a sequence {xn} ⊂ B(x̄, rx̄) such that

y2 ∈ f (x) + g(xn) + ∇ f (x)(xn−1 − x) + ∇ f (x̄)(xn − xn−1) + F (xn), (13)

and
∥xn − xn−1∥ ≤ M∥y1 − y2∥(Mε)n−2 (14)

hold for each n = 2, 3, 4, . . .. We proceed by mathematical induction on n. Letting

ui := yi − f (x) − ∇ f (x)(x1 − x) + f (x̄) + ∇ f (x̄)(x1 − x̄) for each i = 1, 2.

From (12) we have that
∥x − x′∥ ≤ ∥x − x̄∥ + ∥x̄ − x′∥ ≤ rx̄.
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Since ∇ f is continuous around x̄ with the constant ε, it gives that

∥ f (x) − f (x̄) − ∇ f (x̄)(x − x̄)∥ = ∥
∫ 1

0
[∇ f (x̄ + t(x − x̄)) − ∇ f (x̄)](x − x̄)dt∥

≤
∫ 1

0
∥∇ f (x̄ + t(x − x̄)) − ∇ f (x̄)∥∥x − x̄∥dt

≤ ε∥x − x̄∥
∫ 1

0
dt = ε∥x − x̄∥,

It follows, from (12) and the relation r̄ ≤ rȳ − 2εrx̄ by (10), that

∥ui − ȳ∥ ≤ ∥ui − ȳ∥ + ∥ f (x) − f (x̄) − ∇ f (x̄)(x − x̄)∥ + ∥(∇ f (x) − ∇ f (x̄))(x − x′)∥
≤ r̄ + ε(∥x − x̄∥ + ∥x − x′∥)
≤ r̄ + ε(

rx̄

2
+ rx̄) ≤ rȳ.

The above inequality implies that ui ∈ B(ȳ, rȳ) for each i = 1, 2. Denote x1 := x′. Then x1 ∈ G−1
x (y1) by (12) and it follows

from (6) that
y1 ∈ f (x) + g(x1) + ∇ f (x)(x1 − x) + F (x1).

The alternative form of the above inclusion is as follows:

y1 + f (x̄) + ∇ f (x̄)(x1 − x̄)) ∈ f (x) + g(x1) + ∇ f (x)(x1 − x) + F (x1) + f (x̄) + ∇ f (x̄)(x1 − x̄).

By the definition of u1, this yields that

u1 ∈ f (x̄) + g(x1) + ∇ f (x̄)(x1 − x̄) + F (x1).

Hence x1 ∈ G−1
x̄ (u1) by (6). This gives, for (12), that

x1 ∈ G−1
x̄ (u1) ∩ B(x̄, rx̄).

Since G−1
x̄ is Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄), then for every u1, u2 ∈ B(ȳ, rȳ), we have through (8) that there

exists x2 ∈ G−1
x̄ (u2) such that

∥x2 − x1∥ ≤ M∥u1 − u2∥ = M∥y1 − y2∥.
In addition, by the construction of u2 and x1 = x′, we obtain that

x2 ∈ G−1
x̄ (u2) = G−1

x̄
(
y2 − f (x) − ∇ f (x)(x1 − x) + f (x̄) + ∇ f (x̄)(x1 − x̄)

)
.

This, together with (6), gives that

y2 ∈ f (x) + g(x2) + ∇ f (x)(x1 − x) + ∇ f (x̄)(x2 − x1) + F (x2).

This implies that (13) and (14) are true with the constructed points x1 and x2.

Suppose that the points x1, x2, . . . , xk are constructed so that (13) and (14) are true for n = 2, 3, . . . , k. We have to construct
the point xk+1 such that (13) and (14) are also true for n = k + 1. For showing this, let, for each i = 0, 1,

uk
i := y2 − f (x) − ∇ f (x)(xk+i−1 − x) + f (x̄) + ∇ f (x̄)(xk+i−1 − x̄).

Then, for the above inductional assumption, we get

∥uk
0 − uk

1∥ = ∥(∇ f (x̄) − ∇ f (x)
)
(xk − xk−1)∥

≤ ε∥xk − xk−1∥ ≤ ∥y1 − y2∥(Mε)k−1. (15)

We have from (12) that ∥x1 − x̄∥ ≤ rx̄

2
and ∥y1 − y2∥ ≤ 2r̄. This, together with (14), implies that

∥xk − x̄∥ ≤
k∑

i=2

∥xi − xi−1∥ + ∥x1 − x̄∥

≤ 2Mr̄
k∑

i=2

(Mε)i−2 +
rx̄

2

≤ 2Mr̄
1 − Mε

+
rx̄

2
.
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Note by (10) that 4Mr̄ ≤ rx̄(1 − Mε). Therefore, we have from the above inequality that

∥xk − x̄∥ ≤ rx̄. (16)

Moreover, we obtain that

∥xk − x∥ ≤ ∥xk − x̄∥ + ∥x̄ − x∥ ≤ 3
2

rx̄. (17)

Furthermore, using (12) and (17), one has that, for each i = 0, 1,

∥uk
i − ȳ∥

≤ ∥y2 − ȳ∥ + ∥ f (x) − f (x̄) − ∇ f (x̄)(x − x̄)∥ + ∥(∇ f (x) − ∇ f (x̄)
)
(x − xk+i−1)∥

≤ r̄ + ε
(∥x − x̄∥ + ∥x − xk+i−1∥

) ≤ r̄ + ε
( rx̄

2
+

3rx̄

2
)

= r̄ + 2εrx̄.

By the relation r̄ ≤ rȳ − 2εrx̄ in (10), it follows that ∥uk
i − ȳ∥ ≤ rȳ. This shows that uk

i ∈ B(ȳ, rȳ) for each i = 0, 1. By our
assumption (13) is true for n = k. Thus, we have that

y2 ∈ f (x) + g(xk) + ∇ f (x)(xk−1 − x) + ∇ f (x̄)(xk − xk−1) + F (xk).

The above inequality can be written as follows:

y2 + f (x̄) + ∇ f (x̄)(xk−1 − x̄) ∈ f (x) + ∇ f (x)(xk−1 − x) + f (x̄) + g(xk)
+∇ f (x̄)(xk − xk−1) + F (xk) + ∇ f (x̄)(xk−1 − x̄).

Then by the construction of uk
0, we have that uk

0 ∈ f (x̄)+ g(xk)+∇ f (x̄)(xk − x̄)+F (xk). This together with (6) implies that
xk ∈ G−1

x̄ (uk
0). It follows from (16) that

xk ∈ G−1
x̄ (uk

0) ∩ B(x̄, rx̄).

By Lipschit-like property of G−1
x̄ , there exists an element xk+1 ∈ G−1

x̄ (uk
1) such that

∥xk+1 − xk∥ ≤ M∥uk
0 − uk

1∥.

Then by (15), it follows that

∥xk+1 − xk∥ ≤ M∥y1 − y2∥(Mε)k−1. (18)

By the construction of uk
1, we get that

xk+1 ∈ G−1
x̄ (uk

1) = G−1
x̄ (y2 − f (x) − ∇ f (x)(xk − x) + f (x̄) + ∇ f (x̄)(xk − x̄)).

This, together with (6), implies that

y2 ∈ f (x) + g(xk+1) + ∇ f (x)(xk − x) + ∇ f (x̄)(xk+1 − xk) + F (xk+1).

The inequality (18) together with the above inclusion completes the induction step and confirming the existence of a
sequence {xk} which satisfies (13) and (14).

Since Mε < 1, we see from (14) that {xk} is a Cauchy sequence and hence it is convergent, to say x′′, that is, x′′ :=
limk→∞ xk. Note that F has closed graph. Then, taking limit in (13), we get y2 ∈ f (x) + g(x′′) + ∇ f (x)(x′′ − x) + F (x′′),
that is, x′′ ∈ G−1

x (y2). Therefore, we obtain

∥x′ − x′′∥ ≤ lim
n→∞

sup
n∑

k=2

∥xk − xk−1∥

≤ lim
n→∞

sup
n∑

k=2

(Mε)k−2M∥y1 − y2∥

≤ M
1 − Mε

∥y1 − y2∥.

That is,

e(G−1
x (y1) ∩ B(x̄,

rx̄

2
),G−1

x (y2)) ≤ M
1 − Mε

∥y1 − y2∥.

This completes the proof of the Lemma 3.2. �

7
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Before going to prove our main results, we would like to introduce some notations. For our convenience, first define the
mapping Jx : X → Y, for each x ∈ X, by

Jx(·) := f (x̄) + g(·) + ∇ f (x̄)(· − x̄) − f (x) − g(x) − (∇ f (x) + [·, x; g]
)
(· − x).

and the set-valued mapping Φx : X⇒ 2X by
Φx(·) := G−1

x̄ [Jx(·)]. (19)

Then for any x′, x′′ ∈ X, we have

∥Jx(x′) − Jx(x′′)∥ = ∥g(x′) − g(x′′) − [x′, x; g](x′ − x) + [x′′, x; g](x′′ − x)
+ (∇ f (x̄) − ∇ f (x))(x′ − x′′)∥

≤ ∥g(x′) − g(x′′) − [x′′, x; g](x′ − x′′)∥ + ∥([x′′, x; g]
− [x′, x; g]

)
(x′ − x)∥ + ∥∇ f (x̄) − ∇ f (x)∥∥x′ − x′′∥

≤
(
∥[x′′, x′; g] − [x′′, x; g]∥ + ∥∇ f (x̄) − ∇ f (x)∥

)
∥x′ − x′′∥

+ ∥[x′′, x; g] − [x′, x; g]∥∥x′ − x∥ (20)

3.1 Linear Convergence

The first main theorem of this study read as follows, which gives some sufficient conditions confirming the convergence
of the extended Newton-type method with starting point x0.

Theorem 3.1. Suppose that η > 1 and that G−1
x̄ is Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M. Let r̄ be

defined in (10) and let x ∈ B(x̄, rx̄
2 ). Suppose that ε > 0 be such that (11) is hold and ∇ f is continuous on B(x̄, rx̄

2 ) with
constant ε. Let ν > 0 and δ > 0 be such that

(a) δ ≤ min
{ rx̄

4
,

rȳ

7(ε + 3ν)
, 1,

3 − 5Mε
30Mν

,
r̄

3(ε + 3ν)

}
,

(b) 6ηM(ε + 3ν) ≤ 1 − Mε,

(c) ∥ȳ∥ < (ε + 3ν)δ.

Suppose that f + g + F is continuous at x̄ for ȳ i.e. (9) is hold. Then there exists some δ̂ > 0 such that any sequence
{xn} generated by Algorithm 2 with initial point in B(x̄, δ̂) converges to a solution x∗ of (1), that is, x∗ satisfies 0 ∈
f (x∗) + g(x∗) + F (x∗).

Proof. Letting that q :=
ηM(ε + 3ν)

1 − Mε
. Then by the relation 6ηM(ε + 3ν) ≤ 1 − Mε from assumption (b), we obtain

q :=
ηM(ε + 3ν)

1 − Mε
≤ 1

6
.

Take 0 < δ̂ ≤ δ such that

dist(0, f (x0) + g(x0) + F (x0)) ≤ (ε + 3ν)δ for each x0 ∈ B(x̄, δ̂) (21)

(Noting that such δ̂ exists by (9) and assumption (c)). Let x0 ∈ B(x̄, δ̂). We will proceed by mathematical induction
to show that Algorithm 2 generates at least one sequence and any sequence {xn} generated by Algorithm 2 satisfies the
following assertions:

∥xn − x̄∥ ≤ 2δ (22)

and
∥xn+1 − xn∥ ≤ qn+1δ (23)

hold for each n = 0, 1, 2, .... For this purpose, define

rx :=
5
2

(
M

(
ε + 3ν∥x − x̄∥)∥x − x̄∥ + M∥ȳ∥) for each x ∈ X. (24)

8
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Then, thanks to the fact that 6ηM(ε + 3ν) ≤ 1 − Mε < 1 by assumption (b) and ∥ȳ∥ < (ε + 3ν)δ by assumption (c). Since
η > 1, (24) yields that

rx < 5M
(
ε + 6νδ

)
δ + M(ε + 3ν)δ < 5M(ε + 6νδ) + M(ε + 3ν)δ

= 6Mεδ + 33Mνδ < 11Mεδ + 33Mνδ = 11M(ε + 3ν)δ ≤ 11
6η
δ

≤ 2δ for each x ∈ B(x̄, 2δ). (25)

Note that (22) is trivial for n = 0. To show (23) holds for n = 0, firstly we need to show that x1 exists. To complete this,
we have to prove that N(x0) , ∅ by applying Lemma 2.2 to the map Φx0 with η0 = x̄. Let us check that both assertions

(3) and (4) of Lemma 2.2 hold with r := rx0 and λ :=
3
5

. Noting that x̄ ∈ G−1
x̄ (ȳ) ∩ B(x̄, 2δ) by (7) and according to the

definition of the excess e and the mapping Φx0 in (19), we obtain

dist(x̄,Φx0 (x̄)) ≤ e(G−1
x̄ (ȳ) ∩ B(x̄, rx0 ),Φx0 (x̄)) ≤ e(G−1

x̄ (ȳ) ∩ B(x̄, 2δ),Φx0 (x̄))
≤ e(G−1

x̄ (ȳ) ∩ B(x̄, rx̄),G−1
x̄ [Jx0 (x̄)]) (26)

(noting that B(x̄, 2δ) ⊆ B(x̄, rx̄)). By the choice of ε, we have

∥Jx0 (x) − ȳ∥ = ∥ f (x̄) + g(x) + ∇ f (x̄)(x − x̄) − f (x0) − g(x0)
− (∇ f (x0) + [x, x0; g])(x − x0) − ȳ∥

≤ ∥ f (x̄) − f (x0) − ∇ f (x0)(x̄ − x0)∥ + ∥∇ f (x̄ − ∇ f (x0))(x − x̄)∥
+ ∥g(x) − g(x0) − [x, x0; g](x − x0)∥ + ∥ȳ∥

≤ ε(∥x̄ − x0∥ + ∥x − x̄∥) + ∥[x0, x; g] − [x, x0; g]∥∥x − x0∥
+ ∥ȳ∥

≤ ε(∥x̄ − x0∥ + ∥x − x̄∥) + ν(∥x0 − x∥ + ∥x − x0∥)∥x − x0∥
+ ∥ȳ∥. (27)

Note that ∥x0 − x̄∥ ≤ δ̂ ≤ δ, 7(ε + 3ν)δ ≤ rȳ by assumption (a) and ∥ȳ∥ < (ε + 3ν)δ by assumption (c), it follows from (27)
that, for each x ∈ B(x̄, 2δ),

∥Jx0 (x) − ȳ∥ ≤ 3εδ + 18νδ2 + (ε + 3ν)δ < 3εδ + 18νδ + (ε + 3ν)δ
< 6εδ + 18νδ + (ε + 3ν)δ = 7(ε + 3ν)δ
≤ rȳ. (28)

This implies that for all x ∈ B(x̄, 2δ), Jx0 (x) ∈ B(ȳ, rȳ). In particular, letting x = x̄ in (27). Then we obtain that

∥Jx0 (x̄) − ȳ∥ ≤ ε∥x̄ − x0∥ + ν
(
2∥x0 − x̄∥ + ∥x̄ − x0∥

)∥x̄ − x0∥ + ∥ȳ∥
=

(
ε + 3ν∥x̄ − x0∥

)∥x̄ − x0∥ + ∥ȳ∥ (29)
≤ (ε + 3νδ)δ + ∥ȳ∥ < (ε + 3ν)δ + ∥ȳ∥
≤ 2(ε + 3ν)δ ≤ rȳ;

and hence Jx0 (x̄) ∈ B(ȳ, rȳ).

Hence, by (24), (26), (29) and the assumed Lipschitz-like property, we have

dist(x̄,Φx0 (x̄)) ≤ M∥ȳ − Jx0 (x̄)∥
≤ M

(
ε + 3ν∥x̄ − x0∥

)∥x̄ − x0∥ + M∥ȳ∥

=
(
1 − 3

5

)
rx0 =

(
1 − λ)r;

that is, the assertion (3) of Lemma 2.2 is satisfied.

Now, we show that the assertion (4) of Lemma 2.2 holds. To end this, let x′, x′′ ∈ B(x̄, rx0 ). Then, it follows that
x′, x′′ ∈ B(x̄, rx0 ) ⊆ B(x̄, 2δ) ⊆ B(x̄, rx̄) by (25) and assumption (a), and Jx0 (x′), Jx0 (x′′) ∈ B(ȳ, rȳ) by (28). This together
with the assumed Lipschitz-like property implies that

e(Φx0 (x′) ∩ B(x̄, rx0 ),Φx0 (x′′)) ≤ e(Φx0 (x′) ∩ B(x̄, rx̄),Φx0 (x′′))
= e(G−1

x̄ [Jx0 (x′)] ∩ B(x̄, rx̄),G−1
x̄ [Jx0 (x′′)])

≤ M∥Jx0 (x′) − Jx0 (x′′)∥. (30)

9
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Using (20) and the choice of x0, we have

∥Jx0 (x′) − Jx0 (x′′)∥ ≤ (∥[x′′, x′; g] − [x′′, x0; g]∥ + ∥∇ f (x̄) − ∇ f (x0)∥)∥x′ − x′′∥
+ ∥[x′′, x0; g] − [x′, x0; g]∥∥x′ − x0∥

≤
(
ν
(∥x′ − x0∥ + ∥x′ − x0∥

)
+ ε

)
∥x′ − x′′∥

≤ (ε + 6νδ)∥x′ − x′′∥.

It follows, from 30Mνδ ≤ 3 − 5Mε as in assumption (a) together with (30) that

e(Φx0 (x′) ∩ B(x̄, rx0 ),Φx0 (x′′)) ≤ M(ε + 6νδ)∥x′ − x′′∥ ≤ 3
5
∥x′ − x′′∥ = λ∥x′ − x′′∥.

This yields that the assertion (4) of Lemma 2.2 is satisfied. Since both assertions of Lemma 2.2 are fulfilled, we can say
that the Lemma 2.2 is applicable and hence we can conclude that there exists x̂1 ∈ B(x̄, rx0 ) such that x̂1 ∈ Φx0 (x̂1). This
yields that 0 ∈ f (x0) + g(x0) + (∇ f (x0) + [x̂1, x0; g])(x̂1 − x0) + F (x̂1) and thus we conclude that N(x0) , ∅. Since η > 1
and N(x0) , ∅, we can choose d0 ∈ N(x0) such that

∥d0∥ ≤ η dist(0,N(x0)).

By Algorithm 2, x1 := x0 + d0 is defined. Furthermore, by the definition of N(x0) and through (5), we can write

N(x0) :=
{
d0 ∈ X : 0 ∈ f (x0) + g(x0) + (∇ f (x0) + [d0 + x0, x0; g])d0 + F (x0 + d0)

}
=

{
d0 ∈ X : 0 ∈ f (x0) + g(x0 + d0) + ∇ f (x0)d0 + F (x0 + d0)

}
=

{
d0 ∈ X : x0 + d0 ∈ G−1

x0
(0)

}
,

and so
dist(0,N(x0)) = dist(x0,G−1

x0
(0)). (31)

Now, we show that (23) holds also for n = 0. The continuity property of ∇ f implies that

∥∇ f (x) − ∇ f (x̄)∥ ≤ ε, for all x ∈ B(x̄,
rx̄

2
)

and note that r̄ > 0 by assumption (a). Therefore, (11) satisfies (10). Since G−1
x̄ is Lipschitz-like, it follows from Lemma

3.2 that the mapping G−1
x is Lipschitz-like on B(ȳ, r̄) relative to B(x̄, rx̄

2 ) with constant
M

1 − Mε
for each x ∈ B(x̄, rx̄

2 ). In

particular, G−1
x0

is Lipschitz-like on B(ȳ, r̄) relative to B(x̄, rx̄
2 ) with constant

M
1 − Mε

as x0 ∈ B(x̄, δ̂) ⊂ B(x̄, δ) ⊂ B(x̄, rx̄
2 )

by assumption (a) and by the choice of δ̂. Furthermore, by the relation 3(ε + 3ν)δ ≤ r̄ in assumption (a) and assumption
(c) imply that

∥ȳ∥ < (ε + 3ν)δ ≤ r̄
3

(32)

and hence (21) implies that

dist(0,Gx0 (x0)) = dist
(
0, f (x0) + g(x0) + F (x0)

) ≤ (ε + 3ν)δ (33)

≤ r̄
3
.

It is noted earlier that x0 ∈ B(x̄, rx̄
2 ) and 0 ∈ B(ȳ, r̄

3 ) by (32). Thus, applying Lemma 2.1 it can be shown that

dist
(
x0,G−1

x0
(0)

) ≤ M
1 − Mε

dist
(
0,Gx0 (x0)

)
.

The above relation together with (31) yields that

dist
(
0,N(x0)

)
= dist

(
x0,G−1

x0
(0)

) ≤ M
1 − Mε

dist
(
0,Gx0 (x0)

)
. (34)

10
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According to Algorithm 2 and using (33) and (34), we obtain

∥d0∥ ≤ η dist
(
0,N(x0)

) ≤ ηM
1 − Mε

dist
(
0,Gx0 (x0)

)
≤ ηM(ε + 3ν)δ

1 − Mε
= qδ.

This implies that
∥x1 − x0∥ = ∥d0∥ ≤ qδ

and therefore, (23) is hold for n = 0.

Assume that x1, x2, . . . , xk are constructed so that (22) and (23) are hold for n = 0, 1, 2, . . . , k − 1. We will show that there
exists xk+1 such that (22) and (23) are also hold for n = k. Since (22) and (23) are true for each n ≤ k − 1, we have the
following inequality

∥xk − x̄∥ ≤
k−1∑
i=0

∥di∥ + ∥x0 − x̄∥ ≤ δ
k−1∑
i=0

qi+1 + δ ≤ δq
1 − q

+ δ ≤ 2δ.

This shows that (22) holds for n = k. Now with almost the same argument as we did for the case when n = 0, it can be
shown that (23) hold for n = k. The proof is complete. �

When ȳ = 0, that is, x̄ is a solution of (1), Theorem 3.1 is reduced to the following corollary, which gives the local
convergent result for the extended Newton-type method.

Corollary 3.1. Suppose that η > 1 and x̄ is a solution of (1). Let G−1
x̄ be pseudo-Lipschitz around (0, x̄). Let r̃ > 0, ν > 0

and suppose that ∇ f is continuous on B(x̄, r̃) and that

lim
x→x̄

dist(0, f (x) + g(x) + F (x)) = 0.

Then there exists some δ̂ such that any sequence {xn} generated by Algorithm 2 with initial point in B(x̄, δ̂) converges to a
solution x∗ of (1).

Proof. Let G−1
x̄ be pseudo-Lipschitz around (0, x̄). Then there exist constants r0, r̂x̄ and M satisfy the following condition:

e(G−1
x̄ (y1) ∩ B(x̄, r̂x̄),G−1

x̄ (y2)) ≤ M∥y1 − y2∥, for every y1, y2 ∈ B(0, r0). (35)

Thus, by the definition of Lipschitz-like property we can say that Q−1
x̄ is Lipschitz-like on B(0, r0) relative to B(x̄, r̂x̄) with

constant M which satisfy (35). Then, for each 0 < r̃ ≤ r̂x̄, one has that

e(G−1
x̄ (y1) ∩ B(x̄, r̃),G−1

x̄ (y2)) ≤ M∥y1 − y2∥, for every y1, y2 ∈ B(0, r0),

that is,G−1
x̄ is Lipschitz-like on B(0, r0) relative to B(x̄, r̃) with constant M. Let ε ∈ (0, 1) be such that M((6η+1)ε+3ν) ≤ 1.

By the continuity of ∇ f we can choose rx̄ ∈ (0, r̂x̄) such that
rx̄

2
≤ r̃, r0 − 2εrx̄ > 0 and

∥∇ f (x) − ∇ f (x′)∥ ≤ ε, for each x, x′ ∈ B(x̄,
rx̄

2
).

Then
r̄ = min

{
r0 − 2εrx̄,

rx̄(1 − Mε)
4M

}
> 0,

and
min

{ rx̄

4
,

r̄
3(ε + 3ν)

,
r0

7(ε + 3ν)
,

3 − 5Mε
30Mν

}
> 0. (36)

By (36), we can choose 0 < δ ≤ 1 such that

δ ≤ min
{ rx̄

4
,

r̄
3(ε + 3ν)

, 1,
r0

7(ε + 3ν)
,

3 − 5Mε
30Mν

}
.

Thus it is routine to check that inequalities (a)-(c) of Theorem 3.1 are satisfied. Therefore, Theorem 3.1 is applicable to
complete the proof. �
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3.2 Quadratic Convergence

In this section we consider ∇ f is Lipschitz continuous around x̄ and show that the sequence generated by Algorithm 2
converges quadratically.

Let L > 0 and define
r∗ := min

{
rȳ − 2Lr2

x̄ ,
rx̄(1 − MLrx̄)

4M

}
. (37)

Now, our second main theorem can be read as follows:

Theorem 3.2. Let η > 1 and suppose that G−1
x̄ is Lipschitz-like on B(ȳ, r∗) relative to B(x̄, rx̄) with constant M and that

∇ f is Lipschitz continuous on B(x̄, rx̄
2 ) with Lipschitz constant L. Let ν > 0, δ > 0 be such that

(a) δ ≤ min
{

rx̄

4
,

10r∗

3
, 1,

( rȳ

3(L + 4ν)

) 1
2

}
,

(b) (M + 1)(L + 4ν)(ηδ + rx̄) ≤ 1,

(c) ∥ȳ∥ < (L + 4ν)δ2

2
.

Suppose that
lim
x→x̄

dist(ȳ, f (x) + g(x) + F(x)) = 0. (38)

Then there exist some δ̂ > 0 such that any sequence {xn} generated by Algorithm 2 with initial point in B(x̄, δ̂) converges
quadratically to a solution x∗ of (1).

Proof. Setting

s :=
ηM(L + 4ν)δ

1 − MLrx̄
. (39)

Thanks to assumption (b). Since ν > 0, it allows us to write the fact that

ηM(L + 4ν)δ + MLrx̄ < (M + 1)(L + 4ν)ηδ + (M + 1)(L + 4ν)rx̄

= (M + 1)(L + 4ν)(ηδ + rx̄) ≤ 1.

Thus, we have from (39) that

s :=
ηM(L + 4ν)δ

1 − MLrx̄
≤ 1. (40)

Pick 0 < δ̂ ≤ δ be such that

dist(0, f (x0) + g(x0) + F(x0)) ≤ (L + 4ν)δ2

2
for each x0 ∈ B(x̄, δ̂) (41)

Since (38) is hold and assumption (c) is true, we assume that such δ̂ exists, which satisfies (41). Let x0 ∈ B(x̄, δ̂). To
complete the proof of this theorem we use almost similar argument that used for completing the proof of Theorem 3.1.
We show that Algorithm 2 generates at least one sequence and such sequence {xn} generated by Algorithm 2 satisfies the
following assertions:

∥xn − x̄∥ ≤ 2δ; (42)

and

∥dn∥ ≤ s
(

1
2

)2n

δ. (43)

hold for each n = 0, 1, 2, .... Let

rx :=
5M
8

(
(L + 4ν)∥x − x̄∥2 + 2∥ȳ∥

)
for each x ∈ X. (44)

Owing to the fact 4δ ≤ rx̄ in assumption (a) and η > 1 , by assumption (b) we can write as follows

5(M + 1)(L + 4ν)δ = (M + 1)(L + 4ν)(δ + 4δ)
≤ (M + 1)(L + 4ν)(ηδ + rx̄)
≤ 1.

12
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This gives

M(L + 4ν)δ ≤ 1
5

and (L + 4ν)δ ≤ 1
5
. (45)

Hence by 3δ ≤ 5r∗ in assumption (a) together with second inequality of (45), we get

∥ȳ∥ < (L + 4ν)δ2

2
≤ 1

5 · 2 ·
10r∗

3
=

r∗

3
. (46)

Thanks to assumption (c). Utilizing the first inequality from (45) together with assumption (c), we obtain from (44) that

rx <
5M
8

(
(L + 4ν)δ2 + (L + 4ν)δ2

)
=

10M
8

(L + 4ν)δ2 ≤ 10
8 · 5δ

=
δ

4
< 2δ for each x ∈ B(x̄, 2δ). (47)

Note that (42) is trivial for n = 0. In order to show that (43) is hold for n = 0, first we need to prove N(x0) , ∅. The
nonemptyness of N(x0) will ensure us to deduce the existence of the point x1. To complete this, we will apply Lemma

2.2 to the map Φx0 with η0 = x̄. Let us check that both assertions (3) and (4) of Lemma 2.2 hold with r := rx0 and λ :=
1
5

.

Here we note by (7) that x̄ ∈ G−1
x̄ (ȳ) ∩ B(x̄, 2δ). Then, according to the definition of the excess e and the mapping Φx0

defined by (19), we have that

dist(x̄,Φx0 (x̄)) ≤ e(G−1
x̄ (ȳ) ∩ B(x̄, rx0 ),Φx0 (x̄)) ≤ e(G−1

x̄ (ȳ) ∩ B(x̄, 2δ),Φx0 (x̄))
≤ e(G−1

x̄ (ȳ) ∩ B(x̄, rx̄),G−1
x̄ [Jx0 (x̄)]). (48)

For each x ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄
2 ) and Lipschitz continuous property of ∇ f , we obtain

∥Jx0 (x) − ȳ∥ = ∥ f (x̄) + g(x) + ∇ f (x̄)(x − x̄) − f (x0) − g(x0)
− (∇ f (x0) + [x, x0; g])(x − x0) − ȳ∥

≤ ∥ f (x̄) − f (x0) − ∇ f (x0)(x̄ − x0)∥ + ∥(∇ f (x0) − ∇ f (x̄)
)
(x̄ − x)∥

+ ∥g(x) − g(x0) − [x, x0; g](x − x0)∥ + ∥ȳ∥

≤ L
2
∥x̄ − x0∥2 + L∥x0 − x̄∥∥x̄ − x∥ + ∥[x0, x; g] − [x, x0; g]∥∥x − x0∥
+∥ȳ∥

≤ L
2
∥x̄ − x0∥2 + L∥x0 − x̄∥∥x̄ − x∥ + ν(∥x0 − x∥ + ∥x − x0∥

)∥x − x0∥
+∥ȳ∥ (49)

≤ L
2

(δ2 + 4δ2) + 2ν(2δ)2 + ∥ȳ∥ = 5Lδ2

2
+ 8νδ2 + ∥ȳ∥

<
5
2

(L + 4ν)δ2 + ∥ȳ∥.

It follows, from the facts 3(L + 4ν)δ2 ≤ rȳ and 2∥ȳ∥ < (L + 4ν)δ2 respectively in assumptions (a) and (c), that

∥Jx0 (x) − ȳ∥ ≤ 5
2

(L + 4ν)δ2 +
(L + 4ν)δ2

2
= 3(L + 4ν)δ2 ≤ rȳ. (50)

This shows that Jx0 (x) ∈ B(ȳ, rȳ). In particular, let x = x̄ in (49). Then it is easily shown that

Jx0 (x̄) ∈ B(ȳ, rȳ) and ∥Jx0 (x̄) − ȳ∥ ≤ (L + 4ν)
2

∥x̄ − x0∥2 + ∥ȳ∥. (51)

Using the Lipschitz-like property of G−1
x̄ and (51) in (48), we have

dist(x̄,Φx0 (x̄)) ≤ M∥ȳ − Jx0 (x̄)∥ ≤ M(L + 4ν)
2

∥x̄ − x0∥2 + M∥ȳ∥

= (1 − 1
5

)rx0 = (1 − λ)r;
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that is, the assertion (3) of Lemma 2.2 is satisfied.

Now, we show that assertion (4) of Lemma 2.2 holds. To end this, let x′, x′′ ∈ B(x̄, rx0 ). Then we have that x′, x′′ ∈
B(x̄, rx0 ) ⊆ B(x̄, 2δ) ⊆ B(x̄, rx̄) by (47) and Jx0 (x′), Jx0 (x′′) ∈ B(ȳ, rȳ) by (50). This together with Lipschitz-like property
of G−1

x̄ implies that

e(Φx0 (x′) ∩ B(x̄, rx0 ),Φx0 (x′′)) ≤ e(Φx0 (x′) ∩ B(x̄, 2δ),Φx0 (x′′))
≤ e(G−1

x̄ [Jx0 (x′)] ∩ B(x̄, rx̄),G−1
x̄ [Jx0 (x′′)])

≤ M∥Jx0 (x′) − Jx0 (x′′)∥.

Now, we have from (20) that

∥Jx0 (x′) − Jx0 (x′′)∥ ≤ (∥[x′′, x′; g] − [x′′, x0; g]∥ + ∥∇ f (x̄) − ∇ f (x0)∥)∥x′ − x′′∥
+ ∥[x′′, x0; g] − [x′, x0; g]∥∥x′ − x0∥

≤
(
ν
(∥x0 − x′∥ + ∥x′ − x0∥

)
+ L∥x̄ − x0∥

)
∥x′ − x′′∥

≤ (L + 4ν)δ∥x′ − x′′∥.

Combining above two inequalities and first inequality from (45), we obtain that

e(Φx0 (x′) ∩ B(x̄, rx0 ),Φx0 (x′′)) ≤ M(L + 4ν)δ∥x′ − x′′∥

≤ 1
5
∥x′ − x′′∥ = λ∥x′ − x′′∥.

It seems that the assertion (4) of Lemma 2.2 is also satisfied. Thus, we have seen that both assertions (3) and (4) of Lemma
2.2 are fulfilled. So, we can conclude that Lemma 2.2 is applicable to deduce the existence of a point x̂1 ∈ B(x̄, rx0 ) such
that x̂1 ∈ Φx0 (x̂1). This implies that 0 ∈ f (x0) + g(x0) + (∇ f (x0) + [x̂1, x0; g])(x̂1 − x0) + F (x̂1) and thus N(x0) , ∅. Since
η > 1 and N(x0) , ∅, we can choose d0 ∈ N(x0) such that

∥d0∥ ≤ η dist(0,N(x0)).

By Algorithm 2, x1 := x0 + d0 is defined. Furthermore, by the construction of N(x0) and (5), we have that

N(x0) :=
{
d0 ∈ X : 0 ∈ f (x0) + g(x0) + (∇ f (x0) + [d0 + x0, x0; g])d0 + F (x0 + d0)

}
=

{
d0 ∈ X : 0 ∈ f (x0) + g(x0 + d0) + ∇ f (x0)d0 + F (x0 + d0)

}
=

{
d0 ∈ X : x0 + d0 ∈ G−1

x0
(0)

}
,

and so
dist(0,N(x0)) = dist(x0,G−1

x0
(0)). (52)

Now we are ready to show that (43) is hold for n = 0.

Note by assumption (a) that r∗ > 0. Then, from (37) we conclude that

L <
{ rȳ

2r2
x̄

,
1

Mrx̄

}
.

Since ∇ f is Lipschitz continuous on B(x̄, rx̄
2 ) with Lipschitz constant L, we have for all x′, x′′ ∈ B(x̄, rx̄

2 ), that

∥∇ f (x′) − ∇ f (x′′)∥ ≤ L∥x′ − x′′∥ ≤ Lrx̄.

This shows that Lemma 3.2 is applicable with ε := Lrx̄. According to our assumption G−1
x̄ is Lipschitz-like on B(ȳ, r∗)

relative to B(x̄, rx̄). Then, it follows from Lemma 3.2 that for each x ∈ B(x̄, rx̄
2 ), the mapping G−1

x ) is Lipschitz-like on
B(ȳ, r∗) relative to B(x̄, rx̄

2 ) with constant M
1−MLrx̄

. Specifically, G−1
x0

is Lipschitz-like on B(ȳ, r∗) relative to B(x̄, rx̄
2 ) with

constant M
1−MLrx̄

as x0 ∈ B(x̄, δ̂) ⊆ B(x̄, 2δ) ⊆ B(x̄, rx̄
2 ) by assumption (a). On the other hand, (41) implies that

dist(0,Gx0 (x0)) = dist(0, f (x0) + g(x0) + F (x0))

≤ r∗

3
.
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We have shown by (46) that 0 ∈ B(ȳ, r∗
3 ) and it is noted earlier that x0 ∈ B(x̄, rx̄

2 ). Thus by appying Lemma 2.1, we get the
following inequality:

dist(x0,G−1
x0

(0)) ≤ M dist(0,Gx0 (x0))
1 − MLrx̄

=
M dist(0, f (x0) + g(x0) + F (x0))

1 − MLrx̄
.

But, by (52), we can obtain

dist(0,N(x0)) = dist(x0,G−1
x0

(0)) ≤ M dist(0, f (x0) + g(x0) + F (x0))
1 − MLrx̄

. (53)

According to Algorithm 2 and using (39), (41) and (53), we have

∥d0∥ ≤ η dist(0,N(x0))

≤ ηM dist(0, f (x0) + g(x0) + F (x0))
(1 − MLrx̄)

≤ ηM(L + 4ν)δ2

2(1 − MLrx̄)
= s

(1
2

)
δ.

This means that

∥x1 − x0∥ = ∥d0∥ ≤ s
(1
2

)
δ,

and therefore, (43) is true for n = 0.We assume that x1, x2, . . . , xk are constructed and (42), and (43) are true for n =
0, 1, 2, . . . , k − 1. We show that there exists xk+1 such that (42) and (43) are also hold for n = k. Since (42) and (43) are
true for each n ≤ k − 1, we have the following inequality:

∥xk − x̄∥ ≤
k−1∑
i=0

∥di∥ + ∥x0 − x̄∥ ≤ sδ
k−1∑
i=0

(1
2

)2i

+ δ ≤ 2δ.

This shows that (42) holds for n = k.

Finally, we will show that the assertion (43) holds for n = k. For doing this, we will apply again the contraction mapping

principle to Φxk with r := rxk and λ :=
1
5

. Then we can deduce the existence of a fixed point x̂k+1 ∈ B(x̄, rxk ) satisfying

x̂k+1 ∈ Φxk (x̂k+1), which translates to Jxk (x̂k+1) ∈ Gx̄(x̂k+1). This means that 0 ∈ f (xk)+g(xk)+
(∇ f (xk)+[x̂k+1, xk; g]

)
(x̂k+1−

xk) + F (x̂k+1), that is, N(xk) , ∅. Choose dk ∈ N(xk) such that

∥dk∥ ≤ η dist(0,N(xk)).

Then by Algorithm 2, set xk+1 := xk + dk. Moreover, applying Lemma 3.2 we infer that G−1
xk

is Lipschitz-like on B(ȳ, r∗)

15
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relative to B(x̄, rx̄
2 ) with constant M

1−MLrx̄
. Therefore, we can obtain the following inequality:

∥xk+1 − xk∥ = ∥dk∥ ≤ η dist(0,N(xk))
≤ η dist(xk,G−1

xk
(0))

=
ηM

1 − MLrx̄
dist(0, f (xk) + g(xk) + F (xk))

≤ ηM
1 − MLrx̄

∥ f (xk) + g(xk) − f (xk−1) − g(xk−1)

−(∇ f (xk−1) + [xk, xk−1; g]
)
(xk − xk−1)∥

≤ ηM
1 − MLrx̄

(
∥ f (xk) − f (xk−1) − ∇ f (xk−1)(xk − xk−1)∥

+∥g(xk) − g(xk−1) − [xk, xk−1; g](xk − xk−1)∥
)

≤ ηM
2(1 − MLrx̄)

(
L∥xk − xk−1∥2 +

2∥[xk−1, xk; g] − [xk, xk−1; g]∥∥xk − xk−1∥
)

≤ ηM
2(1 − MLrx̄)

(
L∥xk − xk−1∥2 +

2ν(∥xk−1 − xk∥ + ∥xk − xk−1∥)∥xk − xk−1∥
)

=
ηM(L + 4ν)
2(1 − MLrx̄)

∥xk − xk−1∥2

≤ s
2

(
s
(1
2

)2k−1

δ

)2

≤ s
(1
2

)2k

δ.

This implies that (43) holds for n = k and therefore the proof is complete. �

Consider the special case when x̄ is a solution of (1)(that is, ȳ = 0) in Theorem 3.2. Then the following corollary, which
gives the local quadratic convergence result for the extended Newton-type method. The proof of this corollary is similar
to that we did for Corollary 3.1.

Corollary 3.2. Suppose that x̄ is solution of (1) and that G−1
x̄ is pseudo-Lipschitz around (0, x̄). Let η > 1, ν > 0, r̃ > 0

and suppose that ∇ f is Lipschitz continuous on B(x̄, r̃) with Lipschitz constant L. Suppose that

lim
x→x̄

dist(0, f (x) + g(x) + F (x)) = 0.

Then there exist some δ̂ > 0 such that any sequence {xn} generated by Algorithm 2 with initial point in B(x̄, δ̂) converges
quadratically to a solution x∗ of (1).

4. Concluding Remarks

The semilocal and local convergence results for the extended Newton-type method are established when η > 1, ∇ f is
continuous and Lipschitz continuous, g admits first order divided difference as well as G−1

x̄ is Lipschitz-like. This work
extends and improves the result corresponding to (Argyros & Hilout (2008); Rashid (2016)).
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