Regularity and Green's Relations for Generalized Semigroups of Transformations with Invariant Set
- Lei Sun
Abstract
Let ${\cal T}_X$ be the full transformation semigroup on a set $X$.For $Y\subseteq X$, the semigroup $S(X,Y) =\{ f\in {\cal T}_X: f(Y)\subseteq Y\}$ is a subsemigroup of ${\cal T}_ X $. Fix an element $\theta\in S(X,Y)$ and for $f,g\in S(X,Y)$, define a new operation $*$ on $S(X,Y)$ by $f* g=f\theta g$ where $f\theta g$ denotes the produce of $g,\theta$ and $f$ in the original sense. Under this operation, the semigroup $S(X,Y)$ forms a semigroup which is called generalized semigroup of $S(X,Y)$ with the sandwich function $\theta$ and denoted by $S(X,Y,*_\theta)$. In this paper we first characterize the regular elements and then describe Green's relations for the semigroup $S(X,Y,*_\theta)$.
- Full Text: PDF
- DOI:10.5539/jmr.v10n2p24
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org