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Abstract

Let 7T be the full transformation semigroup on a set X. For Y C X, the semigroup S(X,Y) ={f € T7x : f(Y) C Y}isa
subsemigroup of 7. Fix an element 6 € S (X, Y) and for f, g € S(X, Y), define a new operation x on S (X, Y) by fxg = fg
where f6g denotes the produce of g,6 and f in the original sense. Under this operation, the semigroup S (X, Y) forms a
semigroup which is called generalized semigroup of S (X, Y) with the sandwich function 6 and denoted by S (X, ¥, %4). In
this paper we first characterize the regular elements and then describe Green’s relations for the semigroup S (X, Y, #¢).
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1.Introduction

Let S be a semigroup and a,b € S. If a = axa for some x € §, then a is called a regular element of S. The semigroup
S is called regular if all its elements are regular. If a and b generate the same left principle ideal, that is, S'a = S'b,
then we say that a and b are L equivalent and write (a,b) € L or a Lb. If a and b generate the same right principle ideal,
that is, aS' = bS!, then we say that a and b are R equivalent and write (a,b) € R or aRb. If a and b generate the same
principle ideal, that is, S TaST =SS!, then we say that a and b are J equivalent and write (a,b) € J or a J b. It is not
difficult to see that £, R and J are equivalence relations on S. Let H = LNRand D = LV R. Then H and D are also
equivalences. These five equivalences are usually called Green’s relations on S. They were introduced by J.A. Green and
play an important role in the study of the algebraic structure of semigroups.

Let 7x be the full transformation semigroup on a set X. Given a subset Y of X, the authors in (Honyam, P. & Sanwong,
J., 2011) observed a class of subsemigroup of 7y defined by

SX,Y)={feTx: f(Y)C Y}

It is clear that if Y = X then S(X,Y) = Tx. To this extent the semigroup S (X, Y) is regarded as a generalization of 7.
Regularity for the elements in S (X, Y) and Green’s relations on S (X, Y) were described in (Honyam, P. & Sanwong, J.,
2011).

We apply transformations on the left so that for f,g € S(X, Y), their product fg is the transformation obtained by first
performing g and then f. Fix an element § € S(X,Y) and for f,g € S(X,Y), define a new operation = on S(X,Y) by
f =g = fOg where f6g denotes the produce of g,6 and f in the original sense. Under this operation, the semigroup
S(X,Y) forms a semigroup which is called generalized semigroup of S (X, Y) with the sandwich function 8 and denoted
by S(X, Y, %9). Then S(X,Y,%9) = S(X,Y) as sets. Moreover, if § = idx(the identity transformation on the set X), then
S(X,Y,%9) = S(X,Y) as semigroups. The generalized transformation semigroups of the various subsemigroups of 7x
were studied by many authors, see for example (Hickey, J. B., 1983; Kemprasit, Y. & Jaidee, S., 2005; Magill, K. D. Jr.
& Subbiah, S., 1975; Pei, H. S., Sun, L. & Zhai, H. C., 2007; Symons, J. S., 1975; Tsyaputa, G. Y., 2004).

The purpose of this paper is to investigate the regularity of elements and Green’s relations on generalized semigroup
S(X, Y, *g). Accordingly, in Section 2, the condition under which an element f € S(X, Y, %) is regular is analyzed. In
Section 3, Green’s relations on S (X, Y, =) are considered and the relations £, R, H, D and J are descried for arbitrary
elements, respectively.
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2. The Regular Elements of S (X, Y, =)

In this section we investigate the condition under which an element of S (X, Y, ) is regular.
Theorem 2.1. Let f € S(X, Y, #¢). Then f is regular if and only if the following statements hold.
(1) Ol 5x) 1s injective.

(2)0f(X) =0f0(X) and 6f(X) N Y = 6f6(Y).

Proof. Suppose that f isregular. Then f = f*gxf = f0g0f for some g € S(X, Y, x¢). It follows that (f0)(g0)|rx) = id|sx)
and (g6l is injective. So 6|fx) is injective and (1) holds. Clearly, 8f6(X) € 6f(X). For each z € 6f(X), let z = 6f(x)
for some x € X. Write y = g8f(x) and then z = 6f(x) = 6f6g0f(x) = 0f6(y) which implies that 6f(X) C 8f6(X). Thus
0f(X) = 0f6(X). Similarly, we have 0f(X) N Y = 0f6(Y).

Conversely, assume that (1)-(2) hold. Then, for each x € 6f(X) NY, let x = 6f6(y) for some y € Y, and for each
xelf(X)—-Y,letx =0f0() for some y’ € X. Arbitrarily fix a € Y and define g : X — X by

y ifxeffX)ny
8(x) Yy if x€0f(X) -
a otherwise.

Clearly, g € S(X, Y,%g). To see f = f6gff, we need only to show that 6f = 6f6g6f since 6|y, is injective. For each
x e X,if6f(x) € 8f(X)NY, then let 6f(x) = 0f0(y) for some y € Y. If 0f(x) € 6f(X) — Y, then let 6f(x) = 0f6(y") for
some y’ € X. So
| efey) itof(x)ebfX)ny
0108070 = { 6160) if f(x) € 6f(X) -
=0f(x)
which means that 6f = 6f60g0f and so f = f6g0f. Therefore f is regular. O

Denote by Reg(S (X, Y, #¢)) and Reg(S (X, Y)) the sets of all regular elements in semigroups S (X, Y, #¢) and S (X, Y), respec-
tively. It is clear that Reg(S (X, Y, %4)) € Reg(S (X, Y)). In generally, an element f € Reg(S (X, Y)) may be not regular in
S (X, Y, #¢). The following theorem shows when Reg(S (X, Y, %¢)) = Reg(S (X, ¥)).

Theorem 2.2. Let the sets Reg(S (X, Y, %¢)) and Reg(S (X, Y)) be defined as above. Then Reg(S (X, Y, *¢)) = Reg(S (X, Y))
if and only if 6 is a bijection and (X - Y)NY = 0.

Proof. Suppose that Reg(S (X, Y, %¢)) = Reg(S (X, Y)). Since the identity transformation idy on X is regular in S (X, Y), we
have that idy is also regular in S (X, Y %), that is, idy = idx6g0idy = 6g6 for some g € S (X, Y, ). So 6 is bijective. Now
we assert that (X — Y) N Y = 0. Indeed, if 6(x) € Y for some x € X — Y, then x = idx(x) = 6g6(x) € Y, a contradiction.
Therefore, 6(X —Y)NY = 0.

Conversely, we need to show that Reg(S (X, Y)) € Reg(S (X, Y, =¢)). For this purpose, let f € Reg(S (X,Y)). Then f = fgf
for some g € S(X, Y). Since 6 is a bijection and (X — Y)NY = 0, it follows that ' (Y) C Y. So 67! € S(X,Y,*y) and g’ =

07 'g0™! € S(X,Y,g). Thus f = fOg’6f which implies that f € Reg(S (X, Y, #4)). Hence Reg(S (X, Y)) C Reg(S (X, Y, *g))
and Reg(S (X, Y)) = Reg(S (X, Y, *p)).

Theorem 2.3. The semigroup S (X, Y, %) is regular if and only if the following statements hold.
(1) @isabijectionand 6(X - Y)NY = 0.
2)Y=Xorl|Y|=1.
Proof. Suppose that S (X, ¥, %) is regular. Then
S (X, Y, %g) = Reg(S (X, Y, *9)) C Reg(S(X,Y)) € S(X, Y).

Since S (X, Y, %9) = S(X,Y) as sets, it follows that Reg(S (X, Y, %4)) = Reg(S (X, Y)). By Theorem 2.2, 6 is a bijection and
6(X — Y)NY = 0. In the meantime, the semigroup S (X, Y) is also regular. By [5, Corollary 2.4], Y = X or |Y| = 1.

Conversely, by [5, Corollary 2.4] and Theorem 2.2, we have
S(X,Y) = Reg(S(X,Y)) = Reg(S (X, ¥, %9)) € S(X, Y, %g).

Since S (X, Y, %9) = S(X,Y) as sets, it follows that S (X, Y, #y) = Reg(S (X, Y, #4)), as required. O
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3. Green’s Relations on S (X, Y, =)
In this section we describe Green’s relations on S (X, Y, #).

Denote by n(f) the partition of X induced by f € Tx, namely,

() =70 1y € fXOL

Also, let

ay(f)={Pen(f): PNY + 0}.
Let ¢ : n(f) — n(g) be a map. If 8(X) NyY(P) # O for each P € n(f) — ny(f) and 6(Y) Ny(P) # O for each P € ny(f), then
W is said to be Oy-admissible. If i is bijective and both ¢ and ! are fy-admissible, then  is said to be 0y -admissible.
Now we begin with the relation L in S (X, Y, %4).
Theorem 3.1. Let f, g € S(X, Y, *4). Then the following statements are equivalent.
M (fieeL
(2) f(X) = g6(X), f(Y) = g6(Y) and g(X) = fO(X), g(¥) = fO(Y).
(3) There is a §-admissible bijection ¢ : #(f) — n(g) such that f = gy.
Proof. (1)=(2). Suppose that (f, g) € L. Then f = gbh and g = f60k for some h, k € S(X, Y, %¢) and

J(X) = gbh(X) € g0(X) = fOkO(X) € f(X),
which implies that f(X) = g8(X). Moreover,
J(Y) = gbh(Y) < g0(Y) = fOkO(Y) C f(Y),

which implies that f(Y) = gf(Y). Similarly, g(X) = f0(X) and g(Y) = f6(Y).

(2)=(3). It is readily consequential on (2) that f(X) = g(X). Now define  : n(f) — n(g) as follows. For each P € n(f),
let y(P) = g '(f(P)). Then y is a well-defined bijection and f = gy. To see that y : n(f) — n(g) is 0, -admissible, let
n(f) = {P; : i € I} (where I is some index set) and x; = f(P;)(i € I). If P,NY = 0, then x; € f(X) = g8(X) and x; = g(y;)
for some y; € 6(X). Soy; € 8(X) N g’l(xi) and

0X) Ny (Py) = 6(X) N g~ (F(P)) = 6(X) N g™ (x) # 0.
IfP;NY # 0, then x; € f(Y) = gf(Y) and x; = g(y;) for some y; € 6(Y). Thus y; € (Y) N g~ '(x;) and
0Y) N y(P) = 6Y) N g~ (F(P)) = 6(Y) N g™ (x)) # 0.
Hence ¢ : n(f) — n(g) is Oy-admissible. Similarly, ! is also #y-admissible. Consequently, ¢ : 7(f) — n(g) is a

6} -admissible bijection.

(3)=>(1). Suppose that (3) holds. For each x € X, if P, = f~'(f(x)) N Y # 0, then take z € A(Y) N y(P,) and let z = 6(y)
for some y € Y. Define h(x) = y. If P, = f~'(f(x)) N Y = 0, then take z € 8(X) N y(P,) and let z = 6(y) for some y € X.
Define h(x) = y. Clearly, h € S(X,Y, ). To see that f = gbh, for each x € X, let P, = f~!(f(x)) and Q. = g7'(g(2))
(where z € 8(Y) N y(P,) or z € 8(X) N Y(P,)), then

) = f(Py) = gy(Px) = 8(Q2) = g(Qaryy) = &(Qanwy) = Oh(x)

and so f = g6h. Similarly, g = f60k for some k € S(X, Y, %¢). Therefore, (f,g) € L. O

LetZbeasubsetof XandZNY #0. Let¢p : Z - X beamap. If 9(ZNY) C Y, then ¢ is said to be Y-variant. Clearly,
each transformation f € S(X, Y, #¢) is Y-variant. If ¢ is bijective and both ¢ and ¢! are Y-variant, then ¢ is said to be
Y*-variant.

Now we consider the relation R.

Theorem 3.2. Let f, g € S(X, Y, #4). Then the following statements are equivalent.
M (f,8) eR.

(2) n(0f) = n(f) = n(g) = n(6g) and 7y (6f) = ny(f) = 7y(g) = 7y (6g).
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(3) There is a Y*-variant bijection ¢ : f(X) — g(X) such that g = ¢f, and 6|;x) and 0|y, are injective. Moreover,
0f(x)eY = f(x) e Yand g(x’) € Y = g(x’) € Y for some x, x’ € X.

Proof. (1)=(2). Suppose that (f,g) € R. Then f = hfg and g = kOf for some h,k € S(X,Y,*y). Immediately,
7(f) = n(g) and 7y(f) = ny(g). By f = hokéf, (h6)(kO)|sx) = id|sx) and (k0)|sx) is injective. It follows that 6] ¢x)
is injective and n(6f) = n(f). Similarly, n(6g) = n(g). Thus n(6f) = n(f) = n(g) = n(fg). Now we verify that
ny(0f) = ny(f). Clearly, ny(f) refines my(6f). Let 6f(x) = 6f(y) € Y for some distinct x,y € X. Then, by 7(6f) = n(f)
and f = hOkOf, f(x) = f(y) = hOkOf(y) € Y. So ny(6f) refines ny(f) and my(6f) = my(f). Also, we have wy(6g) = my(g).
Consequently, ny(0f) = ny(f) = my(g) = wy(0g).

(2)==(3). By n(f) = n(g), define ¢ : f(X) — g(X) by ¢(x) = g(f~'(x)) for each x € f(X). Then ¢ is a bijection and
g = ¢f. Arbitrarily take y € f(X) Y. Then f~'(y) € my(f) = ny(g) and ¢(y) = g(f~'(y)) € Y which implies that ¢ is
Y-variant. Similarly, ¢! is also Y-variant. Thus ¢ is Y*-variant. In virtue of 7(6f) = n(f), 6| fx) 1s injective. Now assume
that 8f(x) € Y for some x € X. Then there is some P € my(6f) such that x € P. It follows that from 7wy (6f) = my(f) that
f(x) = f(P) € Y. The argument for g is the same.

(3)==(1). Suppose that (3) holds. For each x € 8f(X)NY, let x = 8f(x") for some x’ € X. Fixa € Y and definek : X — X
by

a otherwise.

k(x) = { o(f(x)) if xebfX)NY

If x = 6f(x”) for some x” € X and x” # X, then f(x') = f(x”’) since 05y, is injective and ¢(f(x")) = ¢(f(x”")). Thus
k is well-defined. We now show that k € S(X, Y, %g). Foreachy € Y, eithery ¢ 0f(X) ory € 6f(X). If y ¢ 6f(X), then
k(y)=aecY. Ifye0f(X),lety = 6f(x) € Y for some x € X and then f(x) € Y. So k(y) = ¢(f(x)) € Y since the map
¢ is Y-variant. Thus k € S(X, Y, #g). One can show g = kff. Similarly, f = hfg for some h € S(X, Y, *¢). Therefore,

(f,g) eR O
According to Theorems 3.1 and 3.2, we have the following conclusion readily.

Theorem 3.3. Let f, g € S(X, Y, ). Then the following statements are equivalent.

(D (f.8) e H.

) f(X) = g0(X), f(¥) = gb(Y),g(X) = fO0(X), g(Y) = fO(Y), and n(6f) = n(f) = n(g) = n(0g),ny(6f) = ny(f) =
ny(8) = my(6g).

(3) There is a #"-admissible bijection ¢ : n(f) — m(g) such that f = gy, and while there is a Y*-variant bijection
¢ . f(X) — g(X) such that g = ¢ f, and 0| s(x) and 6|,(x) are injective. Moreover, 0f(x) € Y = f(x) € Y and 9g(x') € Y =
g(x") € Y for some x, x" € X.

In what follows we describe the relation D.

Theorem 3.4. Let f, g € S(X, Y, x¢). Then the following statements are equivalent.

M (f,e) € D.

(2) There are a 8*-admissible bijection  : 1(g) — n(f) and a Y*-variant bijection ¢ : g(X) — f(X) such that fy = ¢g,
Olrx) and Ol4x) are injective. Moreover, 0f(x) € Y = f(x) € Y and 6g(x') € Y = g(x’) € Y for some x, x’ € X.

Proof. (1)=—=(2). Suppose that (f,g) € D. Then (f,h) € L and (h,g) € R for some h € S(X,Y,%9). By (f,h) € L,
h(X) = f(X) and there is a #*-admissible bijection ¢ : n(h) — n(f) such that h = fy. By (h,g) € R, n(h) = n(g) and
there is a Y*-variant bijection ¢ : g(X) — h(X) such that h = ¢g, Ol,x) and 6|,x) are injective, and 6h(x) € ¥ = h(x) € Y
and Og(x’) € Y = g(x") € Y. Replacing n(h) by n(g) and h(X) by f(X), the domain of ¢ and the image of ¢ become
respectively the required ones and 6|sx) is injective as well. Now let 8f(x) € Y, then 6f(x) = 6h(x") for some x € X and
so f(x) = h(x") € Y. From n(h) = n(g) and h = ¢g, it follows that & = ¢g. Therefore, fiy = h = ¢g.

(2)=(1). Define h(x) = ¢(g(x)) for each x € X. Clearly, h € S(X, Y, *¢) and h = ¢g. Then n(h) = n(g) and h = ¢g = fy.
By Theorem 3.1, (h, f) € L and K(X) = f(X). So ¢ : g(X) — h(X) is a Y*-variant bijection such that # = ¢g, Olx) is
injective, and 6h(x) € Y = h(x) € Y. By Theorem 3.2, (h, g) € R. Consequently, (f, g) € D. O

Finally, we investigate the relation 7.

Lemma 3.5. Let f,g € S(X,Y,%9). Then f = hfgbk for some h,k € S(X,Y, %) if and only if there is a Y-variant map
¢ : 0g0(X) — f(X) such that f(X) = $(6g6(X)) and f(Y) = $(6g0(Y)).
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Proof. Suppose that f = h0gbk. Arbitrarily fix a € h6gbk(Y) and then define ¢ : g6(X) — f(X) by

| h(x) if x € 6g6k(X)
$0) = { a  if x € 0g0(X) — Og0k(X).

It is clear that ¢(6g0(X)) C f(X). Now take y € f(X) such that y = f(x) for some x € X. Write k(x) = x’ € X. Then

y = f(x) = htgbk(x) = ¢p(686k(x)) = $(6g6(x")).

So f(X) C ¢(0g8(X)) and f(X) = ¢(0g6(X)). Similarly, we have f(¥Y) = ¢#(6g6(Y)). In what follows we show that ¢
is Y-variant. Lety € 6g0(X) NY. If y € 0g6k(X) NY, then ¢(y) = h(y) € Y. If y € (6g0(X) — 6g6k(X)) N Y, then
¢(x) = a € h6gbk(Y) C Y. Therefore, ¢ is Y-variant.

Conversely, suppose that (1)-(2) hold. Arbitrarily fix a € Y and define 4 : X — X as follows.

| o(x) if x € 0g6(X)
hix) = { a otherwise.

Itis clear that & € S (X, Y, ). By the hypothesis, for each x € Y, there is some y € Y such that f(x) = ¢(6g6(y)) and each
x € X — 7, there is some z € X such that f(x) = ¢(6g6(z)). Define

_Jy ifxey
k(x)‘{z ifrex-v,

It is routine to show that k € S (X, Y, %) and f = hOgbk. O

Theorem 3.6. Let f,g € S(X,Y,%9). Then (f,g) € J if and only if there are Y-variant maps ¢ : g6(X) — f(X) and
Y 0f0(X) — g(X) such that f(X) = ¢(6g60(X)), f(¥) = ¢(6g0(Y)) and g(X) = ¢(6/6(X)), g(¥) = Y(6f6(Y)).
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