On S-quasi-Dedekind Modules
- Abdoul Djibril Diallo
- Papa Cheikhou Diop
- Mamadou Barry
Abstract
Let $R$ be a commutative ring and $M$ an unital $R$-module. A proper submodule $L$ of $M$ is called primary submodule of $M$, if $rm\in L$, where $r\in R$, $m\in M$, then $m\in L$ or $r^{n}M\subseteq L$ for some positive integer $n$. A submodule $K$ of $M$ is called semi-small submodule of $M$ if, $K+L\neq M$ for each primary submodule $L$ of $M$. An $R$-module $M$ is called S-quasi-Dedekind module if, for each $f\in End_{R}(M),$ $ f\neq 0$ implies $Kerf$ semi-small in $M$. In this paper we introduce the concept of S-quasi-Dedekind modules as a generalisation of small quasi-Dedekind modules, and gives some of their properties, characterizations and exemples. Another hand we study the relationships of S-quasi-Dedekind modules with some classes of modules and their endomorphism rings.- Full Text: PDF
- DOI:10.5539/jmr.v9n5p97
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org