On S-quasi-Dedekind Modules

  •  Abdoul Djibril Diallo    
  •  Papa Cheikhou Diop    
  •  Mamadou Barry    


Let $R$ be a commutative ring and $M$ an unital $R$-module. A proper submodule $L$ of $M$ is called primary submodule of $M$, if $rm\in L$, where $r\in R$, $m\in M$, then $m\in L$ or $r^{n}M\subseteq L$ for some positive integer $n$. A submodule $K$ of $M$ is called semi-small submodule of $M$ if, $K+L\neq M$ for each primary submodule $L$ of $M$. An $R$-module $M$ is called S-quasi-Dedekind module if, for each $f\in End_{R}(M),$ $ f\neq 0$ implies $Kerf$ semi-small in $M$. In this paper we introduce the concept of S-quasi-Dedekind modules as a generalisation of small quasi-Dedekind modules, and gives some of their properties, characterizations and exemples. Another hand we study the relationships of S-quasi-Dedekind modules with some classes of modules and their endomorphism rings.

This work is licensed under a Creative Commons Attribution 4.0 License.