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1 Département de Mathmatiques et Informatiques, Université Cheikh Anta Diop, Dakar, Sénégal
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Abstract

Let R be a commutative ring and M an unital R-module. A proper submodule L of M is called primary submodule of M,
if rm ∈ L, where r ∈ R, m ∈ M, then m ∈ L or rnM ⊆ L for some positive integer n. A submodule K of M is called
semi-small submodule of M if, K + L , M for each primary submodule L of M. An R-module M is called S-quasi-
Dedekind module if, for each f ∈ EndR(M), f , 0 implies Ker f semi-small in M. In this paper we introduce the concept
of S-quasi-Dedekind modules as a generalisation of small quasi-Dedekind modules, and gives some of their properties,
characterizations and exemples. Another hand we study the relationships of S-quasi-Dedekind modules with some classes
of modules and their endomorphism rings.
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1. Introduction

Throughout all rings are associative, commutative with identity and all modules are unitary R-module. A submodule K of
M is small in M if, K + N , M for each submodule N of M. A proper submodule L of M is called primary submodule of
M, if rm ∈ L, where r ∈ R, m ∈ M, then m ∈ L or rnM ⊆ L for some positive integer n. A submodule K of M is called
semi-small submodule of M if K + L , M for each primary submodule L of M. An R-module M is called quasi-Dedekind
module if any nonzero endomorphism of M is a monomorphism. An R-module M is called small quasi-Dedekind module
if, for each f ∈ EndR(M), f , 0 implies Ker f small in M. An R-module M is called S-quasi-Dedekind module if, for
each f ∈ EndR(M), f , 0 implies Ker f semi-small in M. Mijbass introduce and study the concept of quasi-Dedekind
module (Mijbass, A. S. (1997)). Ghawi study the concept of small quasi-Dedekind module ( Ghawi, Th. Y. (2010). In
this paper we introduce and study the concept of S-quasi-Dedekind as a generalization of small quasi-Dedekind module.

In the first section, we introduce S-quasi-Dedekind modules and study some basic properties of this concept.

In the second section , we study the relations between S-quasi-Dedekind modules and other related modules.

In third section, we study the endomorphism ring of S-quasi-Dedekind module.

2. Some Properties of S-quasi-Dedekind Modules

In this section, we introduce the concept of S-quasi-Dedekind module as a generalization of quasi-Dedekind module and
give some basic properties examples and characterization of this concept.

Definition 1

1. A proper submodule L of M is called primary submodule of M, if rm ∈ L, where r ∈ R, m ∈ M, then m ∈ L or
rnM ⊆ L for some positive integer n.

2. An ideal I in a ring R is called primary ideal in R, if xy ∈ I, where x, y ∈ R, then either xn ∈ I or yk ∈ I for some
positive integers n and k.

Definition 2 Let M be an R-module and N ≤ M.

1. N is called small submodule of M (N ≪ M, for short) if N + L , M for each submodule L of M..

2. N is called semi-small submodule of M (N ≪s M, for short) if N + L , M for each primary submodule L of M.

3. An ideal J in a ring R is called semi-small ideal in R if I + J , R, for each primary ideal I of R
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Remark 1

1. Each small submodule is semi-small submodule.

2. For each module M, we have {0} is a semi-small submodule of M.

3. If M is semi-simple module, then {0} is the only semi-small submodule.

Definition 3 Let M be an R-module.

1. M is called small quasi-Dedekind if for all f ∈ EndR(M), f , 0 implies
Ker f ≪ M.

2. M is called S-quasi-Dedekind if for all f ∈ EndR(M), f , 0 implies
Ker f ≪s M.

Example 1

1. Z/4Z as Z-module is S-quasi-Dedekind.

2. Let p is a prime integer and Z(p∞) = { a
pk + Z/ a, k are integers and k is positive }. The only submodules of

Z(p∞) are 0 ≤ a
p + Z ≤

a
p2 + Z ≤ ...

Hence the Z-module Z(p∞) is S-quasi-Dedekind.

Remark 2

1. It is clear that every quasi-Dedekind R-module is a S-quasi-Dedekind R-module. But the converse is not true in
general, for example Z/4Z as Z-module is S-quasi-Dedekind but it is not quasi-Dedekind.

2. Every small quasi-Dedekind R-module is a S-quasi-Dedekind R-module.

3. The direct sum of S-quasi-Dedekind modules is not necessary that a S-quasi-Dedekind module, for example each of
Z/2Z and Z/3Z as Z-module is S-quasi-Dedekind. But Z/2Z ⊕ Z/3Z is not a S-quasi-Dedekind Z-module.

4. Every integral domain R is a S-quasi-Dedekind R-module (Mijbass, A. S. (1997)). But the converse need not be in
general; for example Z/4Z as Z/4Z-module is S-quasi-Dedekind module, but Z/4Z is not an integral domain.

Proposition 1 Let M be a semi-simple R-module. Then M is S-quasi-Dedekind if and only if M is quasi-Dedekind.

Proof. ⇒) Let f ∈ EndA(M), f , 0. Since M is S-quasi-Dedekind, then Ker f ≪s M. But M is semi-simple, so
Ker f = {0}. Thus M is quasi-Dedekind.
(⇐ It is clear.

Proposition 2 Let M be a finitely generated R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-
Dedekind.

Proof. ⇒) Let f ∈ EndR(M), f , 0. Suppose that N is a proper submodule of M such that Ker f + N = M. Since M is a
finitely generated R-module, then there exists a maximal submodule L such that N ⊆ L. Thus Ker f + L = M. But L is a
primary submodule of M and Ker f ≪s M, so L = M, a contradiction. Thus Ker f ≪ M and M is small quasi-Dedekind.
(⇐ It is clear.

Corollary 1 Let R be an Artinian principal ideal ring and let M be a co-Hopfian R-module. Then M is S-quasi-Dedekind
if and only if M is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a co-Hopfian R-module, then by (Barry & all, (1997)), M is a
finitely generated R-module, thus the result is obtained.

Corollary 2 Let R be an Artinian principal ideal ring and let M be a
weakly co-Hopfian R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a weakly co-Hopfian R-module, then (Barry & all, (2010)), M
is a finitely generated R-module, thus the result is obtained.
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Corollary 3 Let R be an Artinian principal ideal ring and let M be a Dedekind finite R-module. Then M is S-quasi-
Dedekind if and only if M is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a Dedekind finite R-module, then by (Barry & all, (2011)),, M
is a finitely generated R-module, thus the result is obtained.

Definition 4 An R-module is called a multiplication R-module if every submodule N of M is of the form IM, for some
ideal I of R.

Proposition 3 Let M be a mutiplication R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. ⇒) Let f ∈ EndR(M) such that f , 0. Suppose that N is a proper submodule such that ker f + N = M. Since M
is a multiplication R-module, then by (El-Bast & all, (1988)), there exists a prime submodule L such that N ⊆ L . Thus
Ker f + L = M. But L is a primary submodule of M and Ker f ≪s M, so L = M. This is a contradiction. Thus Ker f ≪ M
and M is small quasi-Dedekind.
(⇐. It is clear.

Corollary 4 Let M a cyclic R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Lemma 1 Let M be an R-module and let N ≪s M. If K ≤ N, then K ≪s M.

Proof. Let K+L = M, for some primary submodule L of M. Since K ≤ N, then N+L = M, and because N ≪s M,M = L,
a contradiction.

The following theorem is a characterization of S-quasi-Dedekind modules.

Theorem 1 Let M be an R-module. Then M is S-quasi-Dedekind if and only if Hom(M/N,M) = {0}, for all N 3s M.

Proof. ⇒) Suppose that there exists N 3s M such that Hom(M/N,M) , {0}, then there exists ϕ : M/N −→ M, ϕ , 0.
Hence ϕ ◦ π ∈ EndA(M), where π is the canonical projection, and ϕ ◦ π , 0 which implies Ker f (ϕ ◦ π) ≪s M, but
N ⊆ Ker(ϕ ◦ π), so N ≪s M by lemma 1 which implies a contradiction.
⇐) Suppose that there exits f ∈ EndR(M), f , 0 such that Ker f 3s M, define
g : M/Ker f −→ M by g(m+Ker f ) = f (m), for all m ∈ M. So g is well-defined and g , 0. Hence Hom(M/Ker f ,M) , {0}
which is a contraction.

Proposition 4 Let M de an R-module and let R = R/J, where J is an ideal of R such that J ⊆ annR(M). Then M is a
S-quasi-Dedekind R-module if and only if M is a S-quasi-Dedekind R-module.

Proof. ⇒) We have HomR(M/K,M) = HomR(M/K,M), for all K ≤ M by ( Kasch,F. (1982)). Thus, if M is a S-quasi-
Dedekind R-module then HomR(M/K,M) = {0} for all K 3s M, so HomR(M/K,M) = {0} for all K 3s M. Thus M is a
S-quasi-Dedekind R-module.
⇐) The proof of the converse is similary.

Definition 5 Let M be an R-module and let N ≤ M. N is called quasi-invertible if Hom(M/N,M) = {0}.
Lemma 2 (Mijbass (1997), Proposition 1.14) Let M be an R-module and let N ≤ M. Then annR(M) = annR(N).

Proposition 5 Let M be a S-quasi-Dedekind R-module. Then annR(M) = annR(N) for all N 3s M.

Proof. Since M is a S-quasi-Dedekind R-module, so by theorem 1 Hom(M/N,M) = {0} for all N 3s M which implies N
is a quasi-invertible submodule for all N 3s M. Thus by lemma 2 annR(M) = annR(N) for all N 3s M.

Lemma 3 (Abdullah & all, (2011), Proposition 1.16)
Let M and M′ be R-modules and let f : M −→ M′ be an R-epimorphism.
If K ≪s M such that Ker f ⊆ K, then f (K) ≪s M′.

Proposition 5 Let M1,M2 be R-modules such that M1 � M2.
Then M1 is a S-quasi-Dedekind R-module if and only if M2 is a S-quasi-Dedekind R-module.

Proof. ⇒) Let f ∈ EndR(M2), f , 0. To prove Ker f ≪s M2. Since M1 � M2, there exists an isomorphism g : M1 −→ M2
and g−1 : M2 −→ M1. We have. Hence h = g−1 ◦ f ◦ g ∈ EndR(M1), h , 0. So Kerh ≪s M1, then g(kerh) ≪s M2 by
lemma 3. But we can show that g(Kerh) = Ker f as follows; let y ∈ g(kerh), then y = g(x), x ∈ Kerh. Hence h(x) = 0;
that is g−1 ◦ f ◦ g(x) = 0, then g−1 ◦ f (y) = 0, so g−1( f (y)) = 0 and hence f (y) = 0, since g−1 is a monomorphism, so
that y ∈ Ker f . Now let y ∈ Ker f , then f (y) = 0, but y ∈ M2, so there exists an x ∈ M1 such that y = g(x), since g is
surjective. Thus f (g(x)) = 0 and so g−1( f (g(x)) = 0; that is h(x) = 0. Hence x ∈ Kerh. This implies y = g(x) ∈ g(Kerh),
thus ker f = g(kerh), hence Ker f ≪s M2.
⇐) The proof the converse is similary.
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Lemma 4 Let M,M′ be injective R-modules that can be embedded in each other. Then M � M′.

Proof. Since M′ is injective, we may assume that M = M′ ⊕ X and that there exists a monomorphism f : M −→ M′.
Note first that if x0 + f (x1) + .... + f (xn) = 0, where xi ∈ X, then all xi = 0. In fact, x0 ∈ Im f ⊆ M′ implies x0 = 0, and
so x1 + f (x2) + .... + f n−1(xn) = 0, since f is a monomorphism. By induction, we see that all xi = 0. Therefore, we have
M” = X ⊕ f (X) ⊕ f 2(X) ⊕ .... ⊆ M. Let E = E( f (M”)) ⊆ M′, and write M′ = E ⊕ Y . Since M” = X ⊕ f (M”), E(M”) =
E(X ⊕ f (M”)) � E(X) ⊕ E( f (M”)) = X ⊕ E. On the other hand E(M”) � E( f (M”)) = E, so X ⊕ E � E. From this, we
deduce that M = X ⊕ M′ = X ⊕ E ⊕ Y � E ⊕ Y = M′

Proposition 6 Let M,M′ be R-modules that can be embedded in each other. Then E(M) is a S-quasi-Dedekind R-module
if and only if E(M′) is a S-quasi-Dedekind R-module, where E(M) is an injective hull of M.

Proof. Fix an embedding f : M −→ M′. Then f (M) ⊆ M′ ⊆ E(M′), so E(M′) contains a copy of E( f (M)) � E(M).
By symmetric E(M) also contains a copy of E(M′′). Since E(M), E(M′) are injective, then by lemma 4, E(M) � E(M′).
Hence by Proposition 5, the result is obtained.

Definition 6 Let S be submodule of an R-module M. A submodule C of M is said to be a complement to S in M if C is
maximal with respect to the property that C ∩ S = {0}.
Remark 3

1. By Zorn’s lemma, any submodule S of an R-module has a complement; in fact, any submodule C0 with C0∩S = {0}
can be enlarged into a complement to S in M.

2. If C is a complement to S , then we have C ⊕ S ≤e M

Proposition 7 Let M be any R-module and let g : M −→ E(M). If g is an injective endomorphism of M, then the
following assertions are verified.

1. E(M) is a S-quasi-Dedekind R-module.

2. If N ≤e M, then E(N) is a S-quasi-Dedekind R-module.

3. For any N ≤ M, there exists K ≤ M such that E(N) ⊕ E(K) is a S-quasi-Dedekind R-module.

4. If M and M′ are R-modules that can be embedded in each other for any injective R-module M′, then M′ is a
S-quasi-Dedekind R-module.

Proof.

1. Let f ∈ EndR(E(M)) such that f , 0 and g = f|M . Since is f|M injective, we have M ∩ Ker f = {0}. Therefore
M ≤e E(M) implies that Ker f = {0},
so Ker f ≪s E(M). Thus E(M) is a S-quasi-Dedekind R-module.

2. Since M ≤e E(M), if N ≤e M, then N ≤e E(M) and E(M) is injective, so the inclusion N −→ E(M) is an injective
enveloppe of M. Thus E(M) = E(N), and so the result is obtained.

3. By Zorn’s lemma, there exists a maximal submodule K of M with respect
N ∩ K = {0}. Then N ⊕ K ≤e M and so by the proof of (2) E(M) � E(N ⊕ K) � E(N) ⊕ E(K). Thus E(N) ⊕ E(K)
is a S-quasi-Dedekind R-module.

4. Since M′ is an R-module injective, then E(M′) = M′. By the proposition 6, E(M) � E(M′) = M′, so M′ is a
S-quasi-Dedekind R-module.

Lemma 5 (Lam,T. Y. (1999), P. 213)
Let R be a quasi-Frobenius ring. Then any right R-module M can be embedded in a free module.

Proposition 8 Let R be a quasi-Frobenius ring and let M be a finitely generated R-module. Then E(M) is a S-quasi-
Dedekind R-module if and only E(M) is a small quasi-Dedekind R-module.

Proof. By lemma 5, we have M ⊆ F for some free module F. Since M is finitely generated, we have M ⊆ F0 ⊆ F for
some free module F0 of finte rank. Thus by (Lam,T. Y. (1999), P.412), F0 is an injective R-module, so can be found inside
F0. Then E(M) is a direct summand of F0 and so is also finitely generated. Thus by proposition 2, the result is obtained.
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Lemma 6 (Lam,T. Y. (1999), P.412-413)
For any ring, the following are equivalent:
1-R is quasi-Frobenius.
2-A right R-module is projective if and only if it is injective.

Proposition 9 Let R be a quasi-Frobenius ring and let M a projective R-module. If M is a S-quasi-Dedekind R-module,
then E(M) is a S-quasi-Dedekind R-module.

Proof. By lemma 6, M is injective and so E(M) is a S-quasi-Dedekind R-module.

Proposition 10 Let M be a quasi-injective R-module, T = EndR(M) and m ∈ M. If mR is a simple R-module, then T.m
is a S-quasi-Dedekind S-module.

Proof. Let t ∈ T such that tm , 0. Consider the R-epimorphism: ϕ : mR −→ tmR given by left multiplication by t.
Since mR is simple, ϕ is an isomorphism. Let ψ = ϕ−1 and extend ψ to an endomorphism g ∈ T . Now gtm = ψ(tm) =
ϕ−1(tm) = m, so m ∈ T.m. Thus T.m is a simple T -module. We have ∀ f ∈ EndT (T.m), f , 0, Ker f ≪s T.m. Hence T.m
is a S-quasi-Dedekind S-module.

Proposition 11 Let M be a S-quasi-Dedekind and quasi-injective R-module,
let N ≤ M such that for all U ≤ N, U ≪s M implies U ≪s N.
Then N is a S-quasi-Dedekind R-module.

Proof. Let f ∈ EndR(N), f , 0. To prove that Ker f ≪s N. Since M is a quasi-injectif R-module, there exists
g ∈ EndR(M) such that g ◦ i = i ◦ f , where i is the inclusion mapping. Then g(N) = f (N) , 0. So Kerg ≪s M.
But Ker f ⊆ Kerg, hence Ker f ≪s M. On the other hand Ker f ≤ N, so by hypothesis Ker f ≪s N. Thus N is a
S-quasi-Dedekind R-module.

Proposition 12 Every direct summand of a finitely generated S-quasi-Dedekind module is a S-quasi-Dedekind module.

Proof. Let M = N ⊕ K such that M is a S-quasi-Dedekind R-module. Let f : K −→ K, f , 0. We have h = i ◦ f ◦ p ∈
EndR(M), h , 0, where p is the natural projection and i is the inclusion mapping. Hence Kerh ≪s M, so Kerh ≪ M since
M is finitely generated. But Ker f ⊆ Kerh, so Ker f ≪ M. On the other hand Ker f ≤ K implies Ker f ≪ K by (Ali, A.
H. (2010.), Prop. 1.12). Thus K is a S-quasi-Dedekind R-module.

Remark 4 If M is a S-quasi-Dedekind R-module, N ≤ M. Then it is not necessary that M/N is a S-quasi-Dedekind
R-module; for example the Z-module M = Z is S-quasi-Dedekind. Let N = 12Z ≤ Z, then M/N = Z/12Z is not a
S-quasi-Dedekind R-module.

Remark 5 The homomorphic image of S-quasi-Dedekind module is not necessary S-quasi-Dedekind; for example Z as
Z-module S-quasi-Dedekind. But π : Z −→ Z/12Z, where π is the natural projection. However Z/12Z as Z-module is
not S-quasi-Dedekind.

Lemma 7 (Abdullah & all, (2011), Prop. 1.18)
Let N and K are submodules of an R-module M such that N ⊆ K and N ⊆ L for each primary submodule L of M, if
N ≪s M, then K/N ≪S M/N if and only if K ≪s M.

Proposition 13 Let M be a S-quasi-Dedekind R-module such that M/U is projectif for all U 3s M. Let N ≪s M such
that N ⊆ L, for each primary submodule L of M. Then M/N is a S-quasi-Dedekind R-module for all N ≤ M.

Proof. Let K/N 3s M/N, so by lemma 7, K 3s M.
Suppose that Hom((M/N)/(K/N),M/N) , {0}, but Hom((M/N)/(K/N),M/N) � Hom(M/K,M/N), so there exists f :
M/K −→ M/N, f , 0. Since M/K is projective, then there exists
g : M/K −→ M such that π ◦ g = f , where π is the canonical projection.
Hence π ◦ g(M/K) = f (M/K) , 0, so g , 0. But g ∈ Hom(M/K,M),K 3s M. Thus Hom(M/K,M) , {0},K 3s M; that
is M is not S-quasi-Dedekind, which is a contradiction. Thus M/N is a S-quasi-Dedekind R-module.

Proposition 14 Let M be a quasi-projective R-module and let N ≪s M such that g−1(N) ≪s M, for each g ∈ EndR(M).
If N ⊆ L, for each primary submodule L of M, then M/N is a S-quasi-Dedekind R-module.

Proof. Let f ∈ EndR(M/N) such that f , 0. Since M is quasi-projective, there exists g ∈ EndR(M) such that π ◦ g = f ◦ π
where π is the canonical projection.
Let Ker f = L/N = {x + N : f (x + N) = N} = {x + N : f ◦ π(x) = N} = {x + N : π ◦ g(x) = N} = x + N : g(x) + N =
N} = {x + N : g(x) ∈ N} = {x + N : x ∈ g−1(N)} = g−1(N)/N. Thus Ker f = g−1(N)/N. But g−1(N) ≪s M, so by lemma 7,
g−1(N)/N ≪s M/N. That is Ker f ≪s M/N.
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3. S-quasi-Dedekind Modules and Other Related Modules

In this section, we study the relations between S-quasi-Dedekind modules and other related modules.

Definition 7

1. An R-module M is called indecomposable if M , {0} and it is not a direct sum of two nonzero submodules.

2. A left principal indecomposable module of a ring R is a left submodule of R, that is a direct summand of R and is
an indecomposable module.

Proposition 15 Let R be an Artinian ring which is quasi-Frobenius. Then every principal indecomposable R-module has
a S-quasi-Dedekind socle.

Proof. For any primitive idempotent e, consider the principal indecomposable R-module eR. Since eR is projective, then
by lemma 6, it is also injective. Let M be simple submodule of eR. Clearly eR = E(M), so M ≤e eR. In particular
S oc(eR) = M is S-quasi-Dedekind.

Proposition 16 Let R be quasi-Frobenius ring and two principal indecomposable R-modules M,M′ such that M � M′.
Then there exists two S-quasi-Dedekind R-modules M1,M2 such that M1 � M2.

Proof. Let M1 = S oc(M) and M2 = S oc(M′). Then by (Lam,T. Y. (1999), P.423), M1,M2 are simple R-modules. If
M � M′, then M1 � M2 and M1,M2 are S-quasi-Dedekind R-modules.

Proposition 17 Let M be an R-module such that every nonzero factor module of M is indecomposable. Then M is a
S-quasi-Dedekind module R-module.

Proof. Let L be a proper submodule of M. Suppose that M = L+K, where K ≤ M. We have M/L∩K � M/L⊕M/K. But
M/L ∩ K is indecomposable so M/L , {0} and M/K = {0}. Hence M = K. Thus L ≪ M and so M is a S-quasi-Dedekind
module R-module.

Proposition 18 Let M be an indecomposable R-module with finite lengh such that ∀ f ∈ EndR(M), f is not nilpotent.
Then M is a S-quasi-Dedekind module R-module.

Proof. Let f ∈ EndR(M) such that f , 0. Since f is not nilpotent, then by (Anderson, F.W.& all (1973), P.138)
Ker f = {0}. Thus M is a S-quasi-Dedekind module R-module.

Definition 8 An R-module M is said to have the direct summand intersection property (briefly SIP) if the intersection of
any two direct summands is again a direct summand.

Lemma 8 Let M be an indecomposable R-module and N be any R-module. If M ⊕ N has the SIP, then every nonzero
R-homomorphism from M to N is a monomorphism.

Proof. Assume Hom(M,N) , {0} and let f be a nonzero R-homomorphism from M to N. Since M ⊕ N has the SIP, then
Ker f is a direct summand of M. But M is indecomposable so Ker f = {0} and f is a monomorphism.

Proposition 19 Let M an indecomposable R-module and let N be any R-module such that Hom(M,N) , {0}. If M ⊕ N
has the SIP, then M is S-quasi-Dedekind. In particular, if M ⊕ M has the SIP, then M is S-quasi-Dedekind.

Proof. By lemma 8, there is a monomorphism f from M to N. Let g ∈ EndR(M) such that g , 0. We claim that
Kerg ≪s M. Assume that Kerg 3s M, then Kerg , {0}. Since f is a monomorphism, then Ker f ◦ g = Kerg , {0}. This
is a contradiction. Thus Kerg ≪s M. Hence M is S-quasi-Dedekind.

Definition 9 Let M be an R-module.

1. M is called local if it has exactly one maximal submodule that contains all proper submodules of M.

2. M is called hollow if M , {0} and every proper submodule of M is small in M.

Remark 6

1. Every proper submodule of a local module M is semi-small in M.

2. Every Hollow R-module is S-quasi-Dedekind. But the converse is not true in general; for example Z as Z-module
is S-quasi-Dedekind, but it is not Hollow.
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Proposition 20 Every local module M is a S-quasi-Dedekind module.

Proposition 21 Let M be a hollow R-module. Then M/N is a S-quasi-Dedekind R-module, for all proper submodule N
of M.

Proof. Suppose that M is a hollow R-module, then M/N is a hollow R-module, for all proper submodule N of M. Thus
M/N is a S-quasi-Dedekind R-module, for all proper submodule N of M.

Proposition 22 Let M be an R-module such that for some proper submodule N of M, M/N is Hollow and N ≪ M. Then
M is a S-quasi-Dedekind R-module.

Proof. Let L be a proper submodule of M. Then L + N , M, so (L + N)/N ≪ M/N. Let M = L + K, where K ≤ M, then
M/N = (L + K)/N = (L + N)/N + (K + N)/N. But (L + N)/N ≪ M/N therefore M = K + N. Since N ≪ M, then M = K.
Thus M is a S-quasi-Dedekind R-module.

Definition 10 An R-module M is called faithful if annR(M) = {0}.
Definition 11 An R-module M is said to have finite uniform dimension if it does not contain a direct sum of an infinite
number of non-zero submodules.

Definition 12 An R-module M is scalar if, for all f ∈ EndR(M) then there exists r ∈ R such that f (x) = rx for all x ∈ M.

Remark 7 Let M be an R-module. Then

1. If M has finite uniform dimension, then M is weakly co-hopfian.

2. If M is scalar, then by (Mohamed-Ali, E. A. (2006), lemma 6.2), EndR(M) � R/annR(M).

Proposition 23 Let M be a semisimple R-module with finite uniform dimension. Then M is a finite direct sum of S-quasi-
Dedekind R-modules.

Proof. Since M is a semisimple R-modules with finite uniform dimension, then M is finitely generated. Thus M is a finite
direct sum of simples R-modules, and so M is a finite direct sum of S-quasi-Dedekind R-modules.

Lemma 9 Let M be a faithful multiplication R-module, then annM(r) = annR(r).M.

Proof. We have annM(r) ⊆ M. Since M is multiplication R-module, so
annM(r) = (annM(r) : M).M. We claim that annR(r) = (annM(r) : M). To prove our assertion: Let a ∈ annR(r), then
ar = 0 and arM = {0}; that is aM ⊆ annM(r), so that a ∈ (annM(r) : M). Thus annR(r) ⊆ (annM(r) : M). Now,
if a ∈ (annM(r) : M), then aM ⊆ annM(r), so raM = {0}, this implies ra ∈ annR(M) = {0}. Thus a ∈ (annR(r), so
(annM(r) : M) ⊆ annR(r). Then annR(r) = (annM(r) : M) and hence annM(r) = annR(r).M.

Lemma 10 (Abdullah & all, (2011), theorem 2.2) Let M be a finitely generated faithful multiplication R-module and let
N = IM be a proper submodule of M. Then I ≪s R if and only if N ≪s M.

Lemma 11 Let M be a local R-module. Then M is a Hollow and cyclic R-module.

Proof. Suppose that M is a local R-module, then M is a hollow and cyclic R-module. Show first that M is cyclic. Since
M is local, then it has a unique maximal submodule N which contains all proper submodules of M. Let n ∈ M et n < N.
If Rm , M, this implies Rm ⊆ N which is a contradiction. To show that M is Hollow, let L be a submodule of M with
L + K = M for some K ≤ M. If K , M, then both of L and K are proper submodules of M. Thus L and K are contained
in M, which implies L = K + L ⊆ N, hence N = M, a contradiction. Thus M = K and so M is a Hollow module.

Theorem 2 Let M be a finitely generated faithful multiplication R-module. Then M is a S-quasi-Dedekind R-module if
and only if R is a S-quasi-Dedekind R-module.

Proof. ⇒) Let f : R −→ R be a nonzero R-homomorphism. Then for each a ∈ R, f (a) = ar for some 0 , r ∈ R. Define
g : M −→ M by g(m) = rm for all m ∈ M. It follows that g , 0, since if g = 0, then rM = {0} and so r ∈ annR(M) = {0},
which is a contradiction.
Since M is S-quasi-Dedekind, then Kerg ≪s M. But Kerg = {m ∈ M : g(m) = rm = 0} = annM(r) and by lemma 9
annM(r) = annR(r).M, hence by lemma 10 annM(r) ≪s M and so annR(r) ≪s R.
However it is easy to see that Ker f = annR(r). Hence ker f ≪s R and hence R is a S-quasi-Dedekind R-module.
⇐) Let f : M −→ M such that f , 0. To prove Ker f ≪s M. Since M is a finitely generated multiplication R-module
so by (Naoum, A.G. (1990), theorem 3.2), there exists 0 , r ∈ R such that f (m) = rm for m ∈ M and Ker f = {m ∈ M :
f (m) = rm = 0} = annM(r).
Now define g : R −→ R by g(a) = ra for all a ∈ R, hence g , 0, since if g = 0, then rR = {0} and so r = 0 which is
a contradiction. Thus Kerg ≪s R, since R is S-quasi-Dedekind. But Kerg = {a ∈ R : g(a) = ra = 0} = annR(r) and so
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annR(r) ≪s R. On the other hand by lemma 9 annM(r) = annR(r).M, so by lemma 10 annM(r) ≪s M. Thus Ker f ≪s M
and M is a S-quasi-Dedekind R-module.

Corollary 5 Let M an R-module. If M is a local faithful R-module. Then R is a S-quasi-Dedekind R-module.

Proof. Suppose that M is a local R-module, then by lemma 11, M is a hollow and cyclic R-module. But M is a faithful
R-module, thus by theorem 2, R is a S-quasi-Dedekind.

Corollary 6 Let R be an Artinian principal ideal ring and let M be an R-module module with finite uniform dimension.
If M is a faithful multiplication R-module, then R is a S-quasi-Dedekind R-module.

Proof. Since M is an R-module module with finite uniform dimension, then M is a weakly co-Hopfian R-module, so M
is a finitely generated R-module. But M is a faithful multipication R-module, thus by theorem 2, R is a S-quasi-Dedekind.

Definition 13 An R-module M is called monoform if for each nonzero submodule N of M and for each f ∈ Hom(N,M), f ,
0 implies Ker f = {0}.
Proposition 24 Every monoform R-module is a S-quasi-Dedekind R-module.

Remark 8 The converse of proposition 24 is not true in general; for example Z/4Z as Z-module is S-quasi-Dedekind,
but it is not monoform.

Definition 14 An R-module M is called anti-Hopfian if M is not simple and every nonzero factor module of M is isomor-
phic to M.

Definition 15 Let M be an R-module. M is called generalized Hopfian (gH, for short), if for each f ∈ EndR(M), f
surjective implies Ker f ≪ M.

Proposition 25 Let M be an anti-Hopfian R-module. If M is a gH R-module, then M is a S-quasi-Dedekind R-module.

Proof. Let f ∈ EndR(M) such that f , 0. Since M is anti-Hopfian R-module, so by (Hirano & all (1986)), f is surjective.
But M is gH R-module implies Ker f ≪ M. Thus Ker f ≪s M and so M is a S-quasi-Dedekind R-module.

Proposition 26 Let M be an anti-Hopfian quasi-projective R-module. If M is Dedekind finite module, then M is a
S-quasi-Dedekind R-module.

Proof. Since M is Dedekind finite quasi-projective, then by (Ghorbani & all (2002) P.327), M is a gH R-module.
Moreover M is an anti-Hopfian and gH R-module, thus by proposition 25, M is a S-quasi-Dedekind R-module.

Definition 16 An R-module M is called special generalized Hopfian (sgH, for short), if whenever f is a left regular
element of EndR(M); that is if f is not a left zero divisor, then Ker f ≪ M.

Theorem 3 Let M be a scalar R-module such that annR(M) is prime. If M is a sgH R-module, then M is a S-quasi-
Dedekind R-module.

Proof. Since M is a scalar R-module, thus by remark 7 EndR(M) � R/annR(M). Thus EndR(M) is an integral domain.
Hence for each f ∈ EndR(M), f , 0, f is nonzero divisor and since M is sgH, so we get Ker f ≪ M. Thus Ker f ≪s M
and so M is a S-quasi-Dedekind R-module.

Proposition 27 Let M be an anti-Hopfian R-module. If M is a sgH R-module, then M is a S-quasi-Dedekind R-module.

Proof. Since M is anti-Hopfian, then by ((Hirano & all (1986)), Theorem 14 P.129) EndR(M) is an integral domain, so
that for each f ∈ EndR(M), f , 0 implies f is nonzero divisor. Hence
Ker f ≪ M, since M is sgH. Thus Ker f ≪s M and so M is a S-quasi-Dedekind R-module.

Definition 18 Let M be an R-module, put Z(M) = {m ∈ M : annR(m) ≤e R}. M is called nonsingular if Z(M) = {0}, and
singular if Z(M) = M.

Lemma 12 Let f : M −→ M′ of homomorphism of right R-modules. If N ≤e M′, f −1(N) ≤e M.

Proof. Consider any e ∈ M\ f −1(N). Then f (e) , 0, so there exists r ∈ R such that f (e)r ∈ N\{0}. Then cleary
er ∈ f −1(N)\{0}. Thus f −1(N) ≤e M.

Remark 9 Given N ≤e M′ and any element y ∈ M′, let f : RR −→ M′ be defined by f (r) = yr. Then the lemma 12
implies f −1(N) = y−1N = {r ∈ R : yr ∈ N} ≤e RR.

Proposition 28 Let M be a nonsingular uniform R-module. Then M is a S-quasi-Dedekind R-module.

Proof. Let f ∈ EndR(M) such that f , 0. Then Ker f = {0}. If Ker f , {0}, then Ker f ≤e M. For any y ∈ M, y−1Ker f ≤e

RR by remark 9.
Now f (y).y−1Ker f ⊆ f (y.y−1Ker f ) ⊆ f (Ker f ) = {0}, so f (y) ∈ Z(M) = {0}, that is f = 0, a contradiction. Then
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Ker f = {0}, and so Ker f ≪s M. Thus M is S-quasi- Dedekind.

Corollary 7 Let M be a nonsingular uniform R-module. If M is injective, then E(M) is a S-quasi-Dedekind R-module.

Proof. Since M is injectif, then E(M) = M. By proposition 28, E(M) is a S-quasi-Dedekind R-module.

Remark 10 If M is a nonsingular module, then by (Lam,T. Y. (1999), P.277) E(M) = E(M), where E(M) is the rational
hull of M.

Corollary 8 Let M be a nonsingular uniform R-module. If M is injectif, then E(M) is a S-quasi-Dedekind R-module.

Proof. We have E(M) = E(M) = M. Thus E(M) is a S-quasi-Dedekind R-module.

Proposition 29 Let M be an R-module such that HomR(S ,M) = {0} for any singular module S . If M is uniform, then M
is a S-quasi-Dedekind R-module.

Proof. Let S be a singular R-module such that HomR(S ,M) = {0}. Then M is nonsingular R-module. If M is not
nonsingular, then S = Z(M) is a nonzero singular module, and the inclusion map S −→ M is a nonzero element in
HomR(S ,M), a contradiction. Thus M is a nonsingular uniform R-module, and so by proposition 28 M is a S-quasi-
Dedekind R-module.

Proposition 30 Let M be a nonsingular R-module. If M is quasi-injectve and indecomposable, then M is a S-quasi-
Dedekind R-module.

Proof. We have M is uniform. If M is not uniform, then N ∩ K , {0}, where N , {0} , K in M. Upon taking E(N) and
E(K) inside E(M), we have E(N) + E(K) = E(N) ⊕ E(K) is injective, we may write E(M) = E(N) ⊕ E(K) ⊕ X, for some
X ⊆ E(M). By (Lam,T. Y. (1999), P.239) M = (M ∩ E(N))⊕ (M ⊕ E(K))⊕ (M ∩ X). Since M ∩ E(N) , {0} , M ∩ E(K),
then M is decomposable, which is a contradiction. Now, M is nonsingular uniform R-module, and by proposition 28, M
is a S-quasi-Dedekind R-module.

Lemma 13

1. If f : M −→ M′ is any R-homomorphism, then f (Z(M)) ⊆ Z(M′).

2. If M ⊆ M′, then Z(M) = M ∩ Z(M′).

Proof.

1. Follows from the fact annR(m) ⊆ annR( f (m)) for any m ∈ M.

2. Follows directly from the definition.

Proposition 31 Let M be an R-module and let 0 , N ≤ M such that N and M/N are both nonsingular. If M is uniform,
then M and N are both S-quasi-Dedekind R-modules.

Proof. First show that M is a S-quasi-Dedekind R-module. By lemma 13, we have Z(M) ∩ N = Z(N) = {0}. Therefore
the projection map from M to M/N induces an injective homomorphism π : Z(M) −→ M/N. Thus by lemma 13, we have
π(Z(M)) ⊆ Z(M/N) = {0}, so π = 0. This implies that Z(M) = {0}. Then M is a nonsingular uniform R-module, and so
by proposition 28, M is a S-quasi-Dedekind R-module. It is clear that N is a nonsingular uniform R-module. Then N is a
S-quasi-Dedekind R-module.

Proposition 32 Let M be an R-module all of whose nonzero quotients have minimal submodules such that S oc(M) is
nonsingular. If M is uniform, then M is a S-quasi-Dedekind R-module.

Proof. Assume that S oc(M) is nonsingular. Then S oc(M) ∩ Z(M) = {0}, so S oc(M) can be enlarged to a complement
Q of Z(M). We have M is nonsingular R-module. If Z(M) , {0}, then, by given assumption on M, there exists T ⊇ Q
such that T/Q is simple, T ∩ Z(M) ⊆ S oc(M), a contradiction. Then M is nonsingular. Thus M is a nonsingular uniform
R-module, and so by proposition 28, M is a S-quasi-Dedekind R-module.

4. Some Properties of the Endomorphism Ring of S-quasi-Dedekind Module

Proposition 33 Let M be a simple R-module. Then EndR(M) is a S-quasi-Dedekind ring.

Proof. By Schur’s lemma EndR(M) is a division ring. Thus EndR(M) is a S-quasi-Dedekind ring.

Proposition 34 Let M be an anti-Hopfian R-module. Then EndR(M) is a S-quasi-Dedekind ring. Proof. Since M is
anti-Hopfian, then by ( Hirano, Y. & all (1986), Theorem 14, P.129), EndR(M) is an integral domain. Thus EndR(M) is a
S-quasi-Dedekind ring.
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Proposition 35 Let M be a nonsingular uniform R-module. Then EndR(M) is a S-quasi-Dedekind ring.

Proof. Let f , 0 , g ∈ EndR(M), then by the proposition 28, f , g are injectives and so f g , 0. Thus EndR(M) is an
integral domain. Hence EndR(M) is a S-quasi-Dedekind ring.

Proposition 36 Let M be a scalar R-module with annR(M) is a prime ideal of R, then EndR(M) is a S-quasi-Dedekind
ring.

Proof. Since M is a scalar R-module, then by remark 7, EndR(M) � R/annR(M), so EndR(M) is an integral domain.
Hence EndR(M) is a S-quasi-Dedekind ring.

Corollary 9 If M is scalar and prime R-module, then EndR(M) is a S-quasi-Dedekind ring.

Proposition 37 Let M be a scalar faithful R-module. EndR(M) is a S-quasi-Dedekind ring if and only if R is a S-quasi-
Dedekind ring.

Proof. Suppose that M is scalar R-module, so by remark 7, EndR(M) � R/annR(M). But M is faithful, thus R/annR(M) �
R, so EndR(M) � R. Hence we have on the result.

Proposition 38 Let R be an Artinian principal ideal ring and let M be a weakly co-Hopfian multiplication faithful
R-module. Then EndR(M) is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that M is a weakly co-Hopfian R-module, so M is a finitely generated R-module. Thus by (Naoum, A.G.
(1990), theorem 3.2), M is scalar R-module; that is M is scalar faithful R-module. Thus by proposition 37, the result is
obtained.

Proposition 39 Let R be an Artinian principal ideal ring and let M be a co-Hopfian multiplication faithful R-module.
Then EndR(M) is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that M is co-Hopfian R-module, so M is a finitely generated R-module. Thus M is scalar R-module; that
is M is scalar faithful R-module. Thus by proposition 37, the result is obtained.

Proposition 40 Let R be an Artinian principal ideal ring and let M be a Dedekind finite multiplication faithful R-module.
Then EndR(M) is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that M is a Dedekind finite R-module, so M is a finitely generated R-module. Thus M is scalar R-module;
that is M is scalar faithful R-module. Thus by proposition 37, the result is obtained.

Definition 18 Let M be an R-module. M is said quasi-prime if annR(N) is a prime ideal of R.

Proposition 41 Let M be a quasi-injective scalar and quasi-prime R-module. Then EndR(N) is a S-quasi-Dedekind ring
for all 0 , N ≤ M.

Proof. Assume that 0 , N ≤ M. Since M is a quasi-injective scalar R-module, then by (Shibab, B.N. (2004), Prop.
1.1.16), N is a scalar R-module. Thus by remark 7, EndR(N) � R/annR(N). But M is a quasi-prime R-module, so
annR(N) is a prime ideal of R; that is EndR(N) is an integral domain. Hence EndR(N) is a S-quasi-Dedekind ring.

Corollary 10 Let M be an injective scalar and quasi-prime R-module. Then EndR(N) is a S-quasi-Dedekind ring for all
0 , N ≤ M.

Corollary 11 Let M be a quasi-injective scalar R-module and let 0 , N ≤ M be a faithful R-module. Then EndR(N) is a
S-quasi-Dedekind ring for all 0 , N ≤ M.

Proof. It follows by (Shibab, B.N. (2004), Prop. 1.1.16) and proposition 37.

References

Abdullah, N. K., & Mijbass, A. S. (2011). Semi-Small Submodules. Tikrit Journal of Pure Science, 16(1).

Ali, A. H. (2010). On Hollow-Lifting Modules, Phd, thesis, College of Science, University of Baghdad.

Anderson, F. W., & Fuller, K. R. (1973). Rings and category of modules, New York, Springer-Verlag.

Barry, M., & Diop, P. C. (2010). Some properties related to commutative weakly FGI-rings. JP Journal of Algebra,
Number theory and applicatio, 19, 141-153.

Barry, M., & Diop, P. C. (2011). On Commutative FDF-Rings, International Mathematical Forum, 6(53), 2637-2644.

Barry, M., Gueye, C. T., & Sanghare, M. (1997). On Commutative FGI-rings. EXTRACTA MATHEMATICAE, 12(3),
255-259.

El-Bast, Z. A., & Smith, P. F. (1988). Multiplication modules. Comm. Algebra, 16(4), 755-799.

106



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 5; 2017

https://doi.org/10.1080/00927878808823601

Ghawi, T. Y. (2010). Some Generalization of Quasi-Dedekind Modules, M. Sc Thesis, College of Education Ibn-AL-
Haitham, University of Baghdad.

Ghorbani, A., & Haghany, A. (2002). Generalized Hopfian Modules. J. Agebra, 255, 324-341.
https://doi.org/10.1016/S0021-8693(02)00124-2

Hirano, Y., & Mogami, I. (1986). On restricted anti-Hopfian Modules. Math. J. Okayama University, 28, 119-131.

Kasch, F. (1982).Modules and Rings, Academic press, London.

Lam, T. Y. (2010). Exercises in Modules and Rings, Springer-Verlag, New York.

Lam, T. Y. (1999). Lectures on modules and rings, Springer-Verlag, Berlin-Heidelber, New York.
https://doi.org/10.1007/978-1-4612-0525-8

Mijbass, A. S. (1997). Quasi-Dedekind Modules, Ph. D. Thesis, College of Science University of Baghdad,

Mohamed-Ali, E. A. (2006). On Ikeda-Nakayama Modules, Ph. D. Thesis, College of Education Ibn-AL-Haitham,
University of Baghdad.

Naoum, A. G. (1990). On the rings of endomorphism of finitely Multiplication Modules. Periodica Math, Hungarica,
21(3), 249-255. https://doi.org/10.1007/BF02651092

Shibab, B. N. (2004). Scalar reflexive Modules. Ph. D. Thesis, College of Education Ibn-AL-Haitham, University of
Baghd ad.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

107


