On S-quasi-Dedekind Modules

Abdoul Djibril Diallo¹, Papa Cheikhou Diop², Mamadou Barry³

¹ Département de Mathmatiques et Informatiques, Université Cheikh Anta Diop, Dakar, Sénégal

² Département de Mathématiques, Université de Thiès, Thiès, Sénégal

³ Département de Mathmatiques et Informatiques, Université Cheikh Anta Diop, Dakar, Sénégal

Correspondence: Papa Cheikhou Diop, Département de Mathématiques, UFR SET, Université de Thiès, Thiès, Sénégal. E-mail: cheikpapa@yahoo.fr

Received: June 8, 2017 Accepted: June 23, 2017 Online Published: September 20, 2017

doi:10.5539/jmr.v9n5p97 URL: https://doi.org/10.5539/jmr.v9n5p97

Abstract

Let *R* be a commutative ring and *M* an unital *R*-module. A proper submodule *L* of *M* is called primary submodule of *M*, if $rm \in L$, where $r \in R$, $m \in M$, then $m \in L$ or $r^n M \subseteq L$ for some positive integer *n*. A submodule *K* of *M* is called semi-small submodule of *M* if, $K + L \neq M$ for each primary submodule *L* of *M*. An *R*-module *M* is called S-quasi-Dedekind module if, for each $f \in End_R(M)$, $f \neq 0$ implies *Kerf* semi-small in *M*. In this paper we introduce the concept of S-quasi-Dedekind modules as a generalisation of small quasi-Dedekind modules, and gives some of their properties, characterizations and exemples. Another hand we study the relationships of S-quasi-Dedekind modules with some classes of modules and their endomorphism rings.

Keywords: Primary submodules, semi-small submodules, quasi-Dedekind modules, S-quasi-Dedekind modules

1. Introduction

Throughout all rings are associative, commutative with identity and all modules are unitary *R*-module. A submodule *K* of *M* is small in *M* if, $K + N \neq M$ for each submodule *N* of *M*. A proper submodule *L* of *M* is called primary submodule of *M*, if $rm \in L$, where $r \in R$, $m \in M$, then $m \in L$ or $r^n M \subseteq L$ for some positive integer *n*. A submodule *K* of *M* is called semi-small submodule of *M* if $K + L \neq M$ for each primary submodule *L* of *M*. An *R*-module *M* is called quasi-Dedekind module if any nonzero endomorphism of *M* is a monomorphism. An *R*-module *M* is called small quasi-Dedekind module if, for each $f \in End_R(M)$, $f \neq 0$ implies Kerf small in *M*. An *R*-module *M* is called S-quasi-Dedekind module if, for each $f \in End_R(M)$, $f \neq 0$ implies Kerf semi-small in *M*. Mijbass introduce and study the concept of quasi-Dedekind module (Mijbass, A. S. (1997)). Ghawi study the concept of small quasi-Dedekind module (Ghawi, Th. Y. (2010). In this paper we introduce and study the concept of S-quasi-Dedekind as a generalization of small quasi-Dedekind module.

In the first section, we introduce S-quasi-Dedekind modules and study some basic properties of this concept.

In the second section, we study the relations between S-quasi-Dedekind modules and other related modules.

In third section, we study the endomorphism ring of S-quasi-Dedekind module.

2. Some Properties of S-quasi-Dedekind Modules

In this section, we introduce the concept of S-quasi-Dedekind module as a generalization of quasi-Dedekind module and give some basic properties examples and characterization of this concept.

Definition 1

- 1. A proper submodule L of M is called primary submodule of M, if $rm \in L$, where $r \in R$, $m \in M$, then $m \in L$ or $r^n M \subseteq L$ for some positive integer n.
- 2. An ideal I in a ring R is called primary ideal in R, if $xy \in I$, where $x, y \in R$, then either $x^n \in I$ or $y^k \in I$ for some positive integers n and k.

Definition 2 Let M be an R-module and $N \leq M$.

- 1. N is called small submodule of M ($N \ll M$, for short) if $N + L \neq M$ for each submodule L of M...
- 2. N is called semi-small submodule of M ($N \ll_s M$, for short) if $N + L \neq M$ for each primary submodule L of M.
- 3. An ideal J in a ring R is called semi-small ideal in R if $I + J \neq R$, for each primary ideal I of R

Remark 1

- 1. Each small submodule is semi-small submodule.
- 2. For each module M, we have $\{0\}$ is a semi-small submodule of M.
- 3. If M is semi-simple module, then {0} is the only semi-small submodule.

Definition 3 Let M be an R-module.

- 1. *M* is called small quasi-Dedekind if for all $f \in End_R(M)$, $f \neq 0$ implies Ker $f \ll M$.
- 2. *M* is called S-quasi-Dedekind if for all $f \in End_R(M)$, $f \neq 0$ implies Kerf $\ll_s M$.

Example 1

- 1. $\mathbb{Z}/4\mathbb{Z}$ as \mathbb{Z} -module is S-quasi-Dedekind.
- 2. Let p is a prime integer and $\mathbb{Z}(p^{\infty}) = \{\frac{a}{p^k} + \mathbb{Z}/a, k \text{ are integers and } k \text{ is positive } \}$. The only submodules of $\mathbb{Z}(p^{\infty})$ are $0 \le \frac{a}{p} + \mathbb{Z} \le \frac{a}{p^2} + \mathbb{Z} \le \dots$ Hence the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is S-quasi-Dedekind.

Remark 2

- 1. It is clear that every quasi-Dedekind R-module is a S-quasi-Dedekind R-module. But the converse is not true in general, for example $\mathbb{Z}/4\mathbb{Z}$ as \mathbb{Z} -module is S-quasi-Dedekind but it is not quasi-Dedekind.
- 2. Every small quasi-Dedekind R-module is a S-quasi-Dedekind R-module.
- *3. The direct sum of S-quasi-Dedekind modules is not necessary that a S-quasi-Dedekind module, for example each of* $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$ as \mathbb{Z} -module is S-quasi-Dedekind. But $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ is not a S-quasi-Dedekind \mathbb{Z} -module.
- 4. Every integral domain R is a S-quasi-Dedekind R-module (Mijbass, A. S. (1997)). But the converse need not be in general; for example Z/4Z as Z/4Z-module is S-quasi-Dedekind module, but Z/4Z is not an integral domain.

Proposition 1 Let M be a semi-simple R-module. Then M is S-quasi-Dedekind if and only if M is quasi-Dedekind.

Proof. \Rightarrow) Let $f \in End_A(M)$, $f \neq 0$. Since *M* is S-quasi-Dedekind, then $Kerf \ll_s M$. But *M* is semi-simple, so $Kerf = \{0\}$. Thus *M* is quasi-Dedekind.

 $(\Leftarrow$ It is clear.

Proposition 2 Let M be a finitely generated R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. ⇒) Let $f \in End_R(M)$, $f \neq 0$. Suppose that *N* is a proper submodule of *M* such that Kerf + N = M. Since *M* is a finitely generated *R*-module, then there exists a maximal submodule *L* such that $N \subseteq L$. Thus Kerf + L = M. But *L* is a primary submodule of *M* and $Kerf \ll_s M$, so L = M, a contradiction. Thus $Kerf \ll M$ and *M* is small quasi-Dedekind. (\leftarrow It is clear.

Corollary 1 Let *R* be an Artinian principal ideal ring and let *M* be a co-Hopfian *R*-module. Then *M* is S-quasi-Dedekind if and only if *M* is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a co-Hopfian R-module, then by (Barry & all, (1997)), M is a finitely generated R-module, thus the result is obtained.

Corollary 2 Let *R* be an Artinian principal ideal ring and let *M* be a weakly co-Hopfian *R*-module. Then *M* is S-quasi-Dedekind if and only if *M* is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a weakly co-Hopfian R-module, then (Barry & all, (2010)), M is a finitely generated R-module, thus the result is obtained.

Corollary 3 Let R be an Artinian principal ideal ring and let M be a Dedekind finite R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a Dedekind finite R-module, then by (Barry & all, (2011)), M is a finitely generated R-module, thus the result is obtained.

Definition 4 An R-module is called a multiplication R-module if every submodule N of M is of the form IM, for some ideal I of R.

Proposition 3 Let M be a mutiplication R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. ⇒) Let $f \in End_R(M)$ such that $f \neq 0$. Suppose that N is a proper submodule such that kerf + N = M. Since M is a multiplication R-module, then by (El-Bast & all, (1988)), there exists a prime submodule L such that $N \subseteq L$. Thus Kerf + L = M. But L is a primary submodule of M and $Kerf \ll_s M$, so L = M. This is a contradiction. Thus $Kerf \ll M$ and M is small quasi-Dedekind.

(\Leftarrow . It is clear.

Corollary 4 Let M a cyclic R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Lemma 1 Let M be an R-module and let $N \ll_s M$. If $K \leq N$, then $K \ll_s M$.

Proof. Let K + L = M, for some primary submodule L of M. Since $K \le N$, then N + L = M, and because $N \ll_s M$, M = L, a contradiction.

The following theorem is a characterization of S-quasi-Dedekind modules.

Theorem 1 Let M be an R-module. Then M is S-quasi-Dedekind if and only if $Hom(M/N, M) = \{0\}$, for all $N \ll_s M$.

Proof. \Rightarrow) Suppose that there exists $N \ll_s M$ such that $Hom(M/N, M) \neq \{0\}$, then there exists $\phi : M/N \longrightarrow M$, $\phi \neq 0$. Hence $\phi \circ \pi \in End_A(M)$, where π is the canonical projection, and $\phi \circ \pi \neq 0$ which implies $Kerf(\phi \circ \pi) \ll_s M$, but $N \subseteq Ker(\phi \circ \pi)$, so $N \ll_s M$ by lemma 1 which implies a contradiction.

 \Leftarrow) Suppose that there exits $f \in End_R(M)$, $f \neq 0$ such that $Kerf \ll_s M$, define

 $g: M/Kerf \longrightarrow M$ by g(m+Kerf) = f(m), for all $m \in M$. So g is well-defined and $g \neq 0$. Hence $Hom(M/Kerf, M) \neq \{0\}$ which is a contraction.

Proposition 4 Let M de an R-module and let $\overline{R} = R/J$, where J is an ideal of R such that $J \subseteq ann_R(M)$. Then M is a S-quasi-Dedekind R-module if and only if M is a S-quasi-Dedekind \overline{R} -module.

Proof. ⇒) We have $Hom_R(M/K, M) = Hom_{\overline{R}}(M/K, M)$, for all $K \le M$ by (Kasch, F. (1982)). Thus, if *M* is a S-quasi-Dedekind *R*-module then $Hom_R(M/K, M) = \{0\}$ for all $K \ll_s M$, so $Hom_{\overline{R}}(M/K, M) = \{0\}$ for all $K \ll_s M$. Thus *M* is a S-quasi-Dedekind \overline{R} -module.

 \Leftarrow) The proof of the converse is similary.

Definition 5 Let M be an R-module and let $N \le M$. N is called quasi-invertible if $Hom(M/N, M) = \{0\}$.

Lemma 2 (Mijbass (1997), Proposition 1.14) Let M be an R-module and let $N \leq M$. Then $ann_R(M) = ann_R(N)$.

Proposition 5 Let M be a S-quasi-Dedekind R-module. Then $ann_R(M) = ann_R(N)$ for all $N \ll_s M$.

Proof. Since *M* is a S-quasi-Dedekind *R*-module, so by theorem 1 $Hom(M/N, M) = \{0\}$ for all $N \ll_s M$ which implies *N* is a quasi-invertible submodule for all $N \ll_s M$. Thus by lemma 2 $ann_R(M) = ann_R(N)$ for all $N \ll_s M$.

Lemma 3 (Abdullah & all, (2011), Proposition 1.16) Let M and M' be R-modules and let $f : M \longrightarrow M'$ be an R-epimorphism. If $K \ll_s M$ such that $Ker f \subseteq K$, then $f(K) \ll_s M'$.

Proposition 5 Let M_1, M_2 be *R*-modules such that $M_1 \cong M_2$.

Then M_1 is a S-quasi-Dedekind R-module if and only if M_2 is a S-quasi-Dedekind R-module.

Proof. ⇒) Let $f \in End_R(M_2)$, $f \neq 0$. To prove $Kerf \ll_s M_2$. Since $M_1 \cong M_2$, there exists an isomorphism $g : M_1 \longrightarrow M_2$ and $g^{-1} : M_2 \longrightarrow M_1$. We have. Hence $h = g^{-1} \circ f \circ g \in End_R(M_1)$, $h \neq 0$. So $Kerh \ll_s M_1$, then $g(kerh) \ll_s M_2$ by lemma 3. But we can show that g(Kerh) = Kerf as follows; let $y \in g(kerh)$, then y = g(x), $x \in Kerh$. Hence h(x) = 0; that is $g^{-1} \circ f \circ g(x) = 0$, then $g^{-1} \circ f(y) = 0$, so $g^{-1}(f(y)) = 0$ and hence f(y) = 0, since g^{-1} is a monomorphism, so that $y \in Kerf$. Now let $y \in Kerf$, then f(y) = 0, but $y \in M_2$, so there exists an $x \in M_1$ such that y = g(x), since g is surjective. Thus f(g(x)) = 0 and so $g^{-1}(f(g(x)) = 0$; that is h(x) = 0. Hence $x \in Kerh$. This implies $y = g(x) \in g(Kerh)$, thus kerf = g(kerh), hence $Kerf \ll_s M_2$.

 \Leftarrow) The proof the converse is similary.

Lemma 4 Let M, M' be injective *R*-modules that can be embedded in each other. Then $M \cong M'$.

Proof. Since M' is injective, we may assume that $M = M' \oplus X$ and that there exists a monomorphism $f : M \longrightarrow M'$. Note first that if $x_0 + f(x_1) + \dots + f(x_n) = 0$, where $x_i \in X$, then all $x_i = 0$. In fact, $x_0 \in Imf \subseteq M'$ implies $x_0 = 0$, and so $x_1 + f(x_2) + \dots + f^{n-1}(x_n) = 0$, since f is a monomorphism. By induction, we see that all $x_i = 0$. Therefore, we have $M'' = X \oplus f(X) \oplus f^2(X) \oplus \dots \subseteq M$. Let $E = E(f(M'')) \subseteq M'$, and write $M' = E \oplus Y$. Since $M'' = X \oplus f(M'')$, $E(M'') = E(X \oplus f(M'')) \cong E(X) \oplus E(f(M'')) = X \oplus E$. On the other hand $E(M'') \cong E(f(M'')) = E$, so $X \oplus E \cong E$. From this, we deduce that $M = X \oplus M' = X \oplus E \oplus Y \cong E \oplus Y = M'$

Proposition 6 Let M, M' be R-modules that can be embedded in each other. Then E(M) is a S-quasi-Dedekind R-module if and only if E(M') is a S-quasi-Dedekind R-module, where E(M) is an injective hull of M.

Proof. Fix an embedding $f : M \longrightarrow M'$. Then $f(M) \subseteq M' \subseteq E(M')$, so E(M') contains a copy of $E(f(M)) \cong E(M)$. By symmetric E(M) also contains a copy of E(M''). Since E(M), E(M') are injective, then by lemma 4, $E(M) \cong E(M')$. Hence by Proposition 5, the result is obtained.

Definition 6 Let *S* be submodule of an *R*-module *M*. A submodule *C* of *M* is said to be a complement to *S* in *M* if *C* is maximal with respect to the property that $C \cap S = \{0\}$.

Remark 3

- 1. By Zorn's lemma, any submodule S of an R-module has a complement; in fact, any submodule C_0 with $C_0 \cap S = \{0\}$ can be enlarged into a complement to S in M.
- 2. If C is a complement to S, then we have $C \oplus S \leq_e M$

Proposition 7 Let M be any R-module and let $g : M \longrightarrow E(M)$. If g is an injective endomorphism of M, then the following assertions are verified.

- 1. E(M) is a S-quasi-Dedekind *R*-module.
- 2. If $N \leq_e M$, then E(N) is a S-quasi-Dedekind *R*-module.
- 3. For any $N \le M$, there exists $K \le M$ such that $E(N) \oplus E(K)$ is a S-quasi-Dedekind *R*-module.
- 4. If M and M' are R-modules that can be embedded in each other for any injective R-module M', then M' is a S-quasi-Dedekind R-module.

Proof.

- 1. Let $f \in End_R(E(M))$ such that $f \neq 0$ and $g = f_{|_M}$. Since is $f_{|_M}$ injective, we have $M \cap Kerf = \{0\}$. Therefore $M \leq_e E(M)$ implies that $Kerf = \{0\}$, so $Kerf \ll_s E(M)$. Thus E(M) is a S-quasi-Dedekind *R*-module.
- 2. Since $M \leq_e E(M)$, if $N \leq_e M$, then $N \leq_e E(M)$ and E(M) is injective, so the inclusion $N \longrightarrow E(M)$ is an injective enveloppe of M. Thus E(M) = E(N), and so the result is obtained.
- 3. By Zorn's lemma, there exists a maximal submodule *K* of *M* with respect $N \cap K = \{0\}$. Then $N \oplus K \leq_e M$ and so by the proof of (2) $E(M) \cong E(N \oplus K) \cong E(N) \oplus E(K)$. Thus $E(N) \oplus E(K)$ is a S-quasi-Dedekind *R*-module.
- 4. Since M' is an R-module injective, then E(M') = M'. By the proposition 6, $E(M) \cong E(M') = M'$, so M' is a S-quasi-Dedekind R-module.

Lemma 5 (Lam, T. Y. (1999), P. 213)

Let R be a quasi-Frobenius ring. Then any right R-module M can be embedded in a free module.

Proposition 8 Let R be a quasi-Frobenius ring and let M be a finitely generated R-module. Then E(M) is a S-quasi-Dedekind R-module if and only E(M) is a small quasi-Dedekind R-module.

Proof. By lemma 5, we have $M \subseteq F$ for some free module F. Since M is finitely generated, we have $M \subseteq F_0 \subseteq F$ for some free module F_0 of finite rank. Thus by (Lam,T. Y. (1999), P.412), F_0 is an injective R-module, so can be found inside F_0 . Then E(M) is a direct summand of F_0 and so is also finitely generated. Thus by proposition 2, the result is obtained.

Lemma 6 (Lam, T. Y. (1999), P.412-413)

For any ring, the following are equivalent:1-R is quasi-Frobenius.2-A right R-module is projective if and only if it is injective.

Proposition 9 Let R be a quasi-Frobenius ring and let M a projective R-module. If M is a S-quasi-Dedekind R-module, then E(M) is a S-quasi-Dedekind R-module.

Proof. By lemma 6, M is injective and so E(M) is a S-quasi-Dedekind R-module.

Proposition 10 Let M be a quasi-injective R-module, $T = End_R(M)$ and $m \in M$. If mR is a simple R-module, then T.m is a S-quasi-Dedekind S-module.

Proof. Let $t \in T$ such that $tm \neq 0$. Consider the *R*-epimorphism: $\phi : mR \longrightarrow tmR$ given by left multiplication by *t*. Since *mR* is simple, ϕ is an isomorphism. Let $\psi = \phi^{-1}$ and extend ψ to an endomorphism $g \in T$. Now $gtm = \psi(tm) = \phi^{-1}(tm) = m$, so $m \in T.m$. Thus *T.m* is a simple *T*-module. We have $\forall f \in End_T(T.m), f \neq 0$, $Kerf \ll_s T.m$. Hence *T.m* is a S-quasi-Dedekind S-module.

Proposition 11 Let M be a S-quasi-Dedekind and quasi-injective R-module, let $N \leq M$ such that for all $U \leq N$, $U \ll_s M$ implies $U \ll_s N$. Then N is a S-quasi-Dedekind R-module.

Proof. Let $f \in End_R(N)$, $f \neq 0$. To prove that $Kerf \ll_s N$. Since M is a quasi-injectif R-module, there exists $g \in End_R(M)$ such that $g \circ i = i \circ f$, where i is the inclusion mapping. Then $g(N) = f(N) \neq 0$. So $Kerg \ll_s M$. But $Kerf \subseteq Kerg$, hence $Kerf \ll_s M$. On the other hand $Kerf \leq N$, so by hypothesis $Kerf \ll_s N$. Thus N is a S-quasi-Dedekind R-module.

Proposition 12 Every direct summand of a finitely generated S-quasi-Dedekind module is a S-quasi-Dedekind module.

Proof. Let $M = N \oplus K$ such that M is a S-quasi-Dedekind R-module. Let $f : K \longrightarrow K$, $f \neq 0$. We have $h = i \circ f \circ p \in End_R(M)$, $h \neq 0$, where p is the natural projection and i is the inclusion mapping. Hence $Kerh \ll_s M$, so $Kerh \ll M$ since M is finitely generated. But $Kerf \subseteq Kerh$, so $Kerf \ll M$. On the other hand $Kerf \leq K$ implies $Kerf \ll K$ by (Ali, A. H. (2010.), Prop. 1.12). Thus K is a S-quasi-Dedekind R-module.

Remark 4 If M is a S-quasi-Dedekind R-module, $N \leq M$. Then it is not necessary that M/N is a S-quasi-Dedekind R-module; for example the \mathbb{Z} -module $M = \mathbb{Z}$ is S-quasi-Dedekind. Let $N = 12\mathbb{Z} \leq \mathbb{Z}$, then $M/N = \mathbb{Z}/12\mathbb{Z}$ is not a S-quasi-Dedekind R-module.

Remark 5 The homomorphic image of S-quasi-Dedekind module is not necessary S-quasi-Dedekind; for example \mathbb{Z} as \mathbb{Z} -module S-quasi-Dedekind. But $\pi : \mathbb{Z} \longrightarrow \mathbb{Z}/12\mathbb{Z}$, where π is the natural projection. However $\mathbb{Z}/12\mathbb{Z}$ as \mathbb{Z} -module is not S-quasi-Dedekind.

Lemma 7 (Abdullah & all, (2011), Prop. 1.18)

Let N and K are submodules of an R-module M such that $N \subseteq K$ and $N \subseteq L$ for each primary submodule L of M, if $N \ll_s M$, then $K/N \ll_s M/N$ if and only if $K \ll_s M$.

Proposition 13 Let M be a S-quasi-Dedekind R-module such that M/U is projectif for all $U \ll_s M$. Let $N \ll_s M$ such that $N \subseteq L$, for each primary submodule L of M. Then M/N is a S-quasi-Dedekind R-module for all $N \leq M$.

Proof. Let $K/N \ll_s M/N$, so by lemma 7, $K \ll_s M$.

Suppose that $Hom((M/N)/(K/N), M/N) \neq \{0\}$, but $Hom((M/N)/(K/N), M/N) \cong Hom(M/K, M/N)$, so there exists $f : M/K \longrightarrow M/N$, $f \neq 0$. Since M/K is projective, then there exists

 $g: M/K \longrightarrow M$ such that $\pi \circ g = f$, where π is the canonical projection.

Hence $\pi \circ g(M/K) = f(M/K) \neq 0$, so $g \neq 0$. But $g \in Hom(M/K, M)$, $K \ll_s M$. Thus $Hom(M/K, M) \neq \{0\}$, $K \ll_s M$; that is *M* is not S-quasi-Dedekind, which is a contradiction. Thus M/N is a S-quasi-Dedekind *R*-module.

Proposition 14 Let M be a quasi-projective R-module and let $N \ll_s M$ such that $g^{-1}(N) \ll_s M$, for each $g \in End_R(M)$. If $N \subseteq L$, for each primary submodule L of M, then M/N is a S-quasi-Dedekind R-module.

Proof. Let $f \in End_R(M/N)$ such that $f \neq 0$. Since *M* is quasi-projective, there exists $g \in End_R(M)$ such that $\pi \circ g = f \circ \pi$ where π is the canonical projection.

Let $Kerf = L/N = \{x + N : f(x + N) = N\} = \{x + N : f \circ \pi(x) = N\} = \{x + N : \pi \circ g(x) = N\} = x + N : g(x) + N = N\} = \{x + N : g(x) \in N\} = \{x + N : x \in g^{-1}(N)\} = g^{-1}(N)/N$. Thus $Kerf = g^{-1}(N)/N$. But $g^{-1}(N) \ll_s M$, so by lemma 7, $g^{-1}(N)/N \ll_s M/N$. That is $Kerf \ll_s M/N$.

3. S-quasi-Dedekind Modules and Other Related Modules

In this section, we study the relations between S-quasi-Dedekind modules and other related modules.

Definition 7

- 1. An R-module M is called indecomposable if $M \neq \{0\}$ and it is not a direct sum of two nonzero submodules.
- 2. A left principal indecomposable module of a ring R is a left submodule of R, that is a direct summand of R and is an indecomposable module.

Proposition 15 Let *R* be an Artinian ring which is quasi-Frobenius. Then every principal indecomposable *R*-module has a S-quasi-Dedekind socle.

Proof. For any primitive idempotent *e*, consider the principal indecomposable *R*-module *eR*. Since *eR* is projective, then by lemma 6, it is also injective. Let *M* be simple submodule of *eR*. Clearly eR = E(M), so $M \leq_e eR$. In particular Soc(eR) = M is S-quasi-Dedekind.

Proposition 16 Let R be quasi-Frobenius ring and two principal indecomposable R-modules M, M' such that $M \cong M'$. Then there exists two S-quasi-Dedekind R-modules M_1, M_2 such that $M_1 \cong M_2$.

Proof. Let $M_1 = Soc(M)$ and $M_2 = Soc(M')$. Then by (Lam, T. Y. (1999), P.423), M_1, M_2 are simple *R*-modules. If $M \cong M'$, then $M_1 \cong M_2$ and M_1, M_2 are S-quasi-Dedekind *R*-modules.

Proposition 17 Let *M* be an *R*-module such that every nonzero factor module of *M* is indecomposable. Then *M* is a *S*-quasi-Dedekind module *R*-module.

Proof. Let *L* be a proper submodule of *M*. Suppose that M = L + K, where $K \le M$. We have $M/L \cap K \cong M/L \oplus M/K$. But $M/L \cap K$ is indecomposable so $M/L \ne \{0\}$ and $M/K = \{0\}$. Hence M = K. Thus $L \ll M$ and so *M* is a S-quasi-Dedekind module *R*-module.

Proposition 18 Let M be an indecomposable R-module with finite length such that $\forall f \in End_R(M)$, f is not nilpotent. Then M is a S-quasi-Dedekind module R-module.

Proof. Let $f \in End_R(M)$ such that $f \neq 0$. Since f is not nilpotent, then by (Anderson, F.W.& all (1973), P.138) $Kerf = \{0\}$. Thus M is a S-quasi-Dedekind module R-module.

Definition 8 An *R*-module *M* is said to have the direct summand intersection property (briefly SIP) if the intersection of any two direct summands is again a direct summand.

Lemma 8 Let M be an indecomposable R-module and N be any R-module. If $M \oplus N$ has the SIP, then every nonzero R-homomorphism from M to N is a monomorphism.

Proof. Assume $Hom(M, N) \neq \{0\}$ and let f be a nonzero R-homomorphism from M to N. Since $M \oplus N$ has the SIP, then *Kerf* is a direct summand of M. But M is indecomposable so $Kerf = \{0\}$ and f is a monomorphism.

Proposition 19 Let *M* an indecomposable *R*-module and let *N* be any *R*-module such that $Hom(M, N) \neq \{0\}$. If $M \oplus N$ has the SIP, then *M* is *S*-quasi-Dedekind. In particular, if $M \oplus M$ has the SIP, then *M* is *S*-quasi-Dedekind.

Proof. By lemma 8, there is a monomorphism f from M to N. Let $g \in End_R(M)$ such that $g \neq 0$. We claim that $Kerg \ll_s M$. Assume that $Kerg \ll_s M$, then $Kerg \neq \{0\}$. Since f is a monomorphism, then $Kerf \circ g = Kerg \neq \{0\}$. This is a contradiction. Thus $Kerg \ll_s M$. Hence M is S-quasi-Dedekind.

Definition 9 Let M be an R-module.

- 1. *M* is called local if it has exactly one maximal submodule that contains all proper submodules of *M*.
- 2. *M* is called hollow if $M \neq \{0\}$ and every proper submodule of *M* is small in *M*.

Remark 6

- 1. Every proper submodule of a local module M is semi-small in M.
- 2. Every Hollow R-module is S-quasi-Dedekind. But the converse is not true in general; for example \mathbb{Z} as \mathbb{Z} -module is S-quasi-Dedekind, but it is not Hollow.

Proposition 20 Every local module M is a S-quasi-Dedekind module.

Proposition 21 Let M be a hollow R-module. Then M/N is a S-quasi-Dedekind R-module, for all proper submodule N of M.

Proof. Suppose that M is a hollow R-module, then M/N is a hollow R-module, for all proper submodule N of M. Thus M/N is a S-quasi-Dedekind R-module, for all proper submodule N of M.

Proposition 22 Let *M* be an *R*-module such that for some proper submodule *N* of *M*, M/N is Hollow and $N \ll M$. Then *M* is a *S*-quasi-Dedekind *R*-module.

Proof. Let *L* be a proper submodule of *M*. Then $L + N \neq M$, so $(L + N)/N \ll M/N$. Let M = L + K, where $K \leq M$, then M/N = (L + K)/N = (L + N)/N + (K + N)/N. But $(L + N)/N \ll M/N$ therefore M = K + N. Since $N \ll M$, then M = K. Thus *M* is a S-quasi-Dedekind *R*-module.

Definition 10 An *R*-module *M* is called faithful if $ann_R(M) = \{0\}$.

Definition 11 An *R*-module *M* is said to have finite uniform dimension if it does not contain a direct sum of an infinite number of non-zero submodules.

Definition 12 An *R*-module *M* is scalar if, for all $f \in End_R(M)$ then there exists $r \in R$ such that f(x) = rx for all $x \in M$.

Remark 7 Let M be an R-module. Then

- 1. If M has finite uniform dimension, then M is weakly co-hopfian.
- 2. If M is scalar, then by (Mohamed-Ali, E. A. (2006), lemma 6.2), $End_R(M) \cong R/ann_R(M)$.

Proposition 23 Let *M* be a semisimple *R*-module with finite uniform dimension. Then *M* is a finite direct sum of *S*-quasi-Dedekind *R*-modules.

Proof. Since *M* is a semisimple *R*-modules with finite uniform dimension, then *M* is finitely generated. Thus *M* is a finite direct sum of simples *R*-modules, and so *M* is a finite direct sum of S-quasi-Dedekind *R*-modules.

Lemma 9 Let M be a faithful multiplication R-module, then $ann_M(r) = ann_R(r).M$.

Proof. We have $ann_M(r) \subseteq M$. Since *M* is multiplication *R*-module, so

 $ann_M(r) = (ann_M(r) : M).M$. We claim that $ann_R(r) = (ann_M(r) : M)$. To prove our assertion: Let $a \in ann_R(r)$, then ar = 0 and $arM = \{0\}$; that is $aM \subseteq ann_M(r)$, so that $a \in (ann_M(r) : M)$. Thus $ann_R(r) \subseteq (ann_M(r) : M)$. Now, if $a \in (ann_M(r) : M)$, then $aM \subseteq ann_M(r)$, so $raM = \{0\}$, this implies $ra \in ann_R(M) = \{0\}$. Thus $a \in (ann_R(r), so (ann_M(r) : M) \subseteq ann_R(r)$. Then $ann_R(r) = (ann_M(r) : M)$ and hence $ann_M(r) = ann_R(r).M$.

Lemma 10 (Abdullah & all, (2011), theorem 2.2) Let M be a finitely generated faithful multiplication R-module and let N = IM be a proper submodule of M. Then $I \ll_s R$ if and only if $N \ll_s M$.

Lemma 11 Let M be a local R-module. Then M is a Hollow and cyclic R-module.

Proof. Suppose that *M* is a local *R*-module, then *M* is a hollow and cyclic *R*-module. Show first that *M* is cyclic. Since *M* is local, then it has a unique maximal submodule *N* which contains all proper submodules of *M*. Let $n \in M$ et $n \notin N$. If $Rm \neq M$, this implies $Rm \subseteq N$ which is a contradiction. To show that *M* is Hollow, let *L* be a submodule of *M* with L + K = M for some $K \leq M$. If $K \neq M$, then both of *L* and *K* are proper submodules of *M*. Thus *L* and *K* are contained in *M*, which implies $L = K + L \subseteq N$, hence N = M, a contradiction. Thus M = K and so *M* is a Hollow module.

Theorem 2 Let *M* be a finitely generated faithful multiplication *R*-module. Then *M* is a *S*-quasi-Dedekind *R*-module if and only if *R* is a *S*-quasi-Dedekind *R*-module.

Proof. \Rightarrow) Let $f : R \longrightarrow R$ be a nonzero *R*-homomorphism. Then for each $a \in R$, f(a) = ar for some $0 \neq r \in R$. Define $g : M \longrightarrow M$ by g(m) = rm for all $m \in M$. It follows that $g \neq 0$, since if g = 0, then $rM = \{0\}$ and so $r \in ann_R(M) = \{0\}$, which is a contradiction.

Since *M* is S-quasi-Dedekind, then $Kerg \ll_s M$. But $Kerg = \{m \in M : g(m) = rm = 0\} = ann_M(r)$ and by lemma 9 $ann_M(r) = ann_R(r).M$, hence by lemma 10 $ann_M(r) \ll_s M$ and so $ann_R(r) \ll_s R$.

However it is easy to see that $Kerf = ann_R(r)$. Hence $kerf \ll_s R$ and hence R is a S-quasi-Dedekind R-module.

(⇐) Let $f : M \longrightarrow M$ such that $f \neq 0$. To prove $Kerf \ll_s M$. Since M is a finitely generated multiplication R-module so by (Naoum, A.G. (1990), theorem 3.2), there exists $0 \neq r \in R$ such that f(m) = rm for $m \in M$ and $Kerf = \{m \in M : f(m) = rm = 0\} = ann_M(r)$.

Now define $g : R \longrightarrow R$ by g(a) = ra for all $a \in R$, hence $g \neq 0$, since if g = 0, then $rR = \{0\}$ and so r = 0 which is a contradiction. Thus $Kerg \ll_s R$, since R is S-quasi-Dedekind. But $Kerg = \{a \in R : g(a) = ra = 0\} = ann_R(r)$ and so

 $ann_R(r) \ll_s R$. On the other hand by lemma 9 $ann_M(r) = ann_R(r) M$, so by lemma 10 $ann_M(r) \ll_s M$. Thus $Kerf \ll_s M$ and *M* is a S-quasi-Dedekind *R*-module.

Corollary 5 Let M an R-module. If M is a local faithful R-module. Then R is a S-quasi-Dedekind R-module.

Proof. Suppose that M is a local R-module, then by lemma 11, M is a hollow and cyclic R-module. But M is a faithful R-module, thus by theorem 2, R is a S-quasi-Dedekind.

Corollary 6 Let *R* be an Artinian principal ideal ring and let *M* be an *R*-module module with finite uniform dimension. If *M* is a faithful multiplication *R*-module, then *R* is a S-quasi-Dedekind *R*-module.

Proof. Since M is an R-module module with finite uniform dimension, then M is a weakly co-Hopfian R-module, so M is a finitely generated R-module. But M is a faithful multiplication R-module, thus by theorem 2, R is a S-quasi-Dedekind.

Definition 13 An *R*-module *M* is called monoform if for each nonzero submodule *N* of *M* and for each $f \in Hom(N, M)$, $f \neq 0$ implies $Kerf = \{0\}$.

Proposition 24 Every monoform R-module is a S-quasi-Dedekind R-module.

Remark 8 The converse of proposition 24 is not true in general; for example $\mathbb{Z}/4\mathbb{Z}$ as \mathbb{Z} -module is S-quasi-Dedekind, but it is not monoform.

Definition 14 An *R*-module *M* is called anti-Hopfian if *M* is not simple and every nonzero factor module of *M* is isomorphic to *M*.

Definition 15 Let M be an R-module. M is called generalized Hopfian (gH, for short), if for each $f \in End_R(M)$, f surjective implies $Kerf \ll M$.

Proposition 25 Let M be an anti-Hopfian R-module. If M is a gH R-module, then M is a S-quasi-Dedekind R-module.

Proof. Let $f \in End_R(M)$ such that $f \neq 0$. Since M is anti-Hopfian R-module, so by (Hirano & all (1986)), f is surjective. But M is gHR-module implies $Kerf \ll M$. Thus $Kerf \ll_s M$ and so M is a S-quasi-Dedekind R-module.

Proposition 26 Let *M* be an anti-Hopfian quasi-projective *R*-module. If *M* is Dedekind finite module, then *M* is a *S*-quasi-Dedekind *R*-module.

Proof. Since M is Dedekind finite quasi-projective, then by (Ghorbani & all (2002) P.327), M is a gH R-module. Moreover M is an anti-Hopfian and gH R-module, thus by proposition 25, M is a S-quasi-Dedekind R-module.

Definition 16 An *R*-module *M* is called special generalized Hopfian (sgH, for short), if whenever *f* is a left regular element of $End_R(M)$; that is if *f* is not a left zero divisor, then $Kerf \ll M$.

Theorem 3 Let M be a scalar R-module such that $ann_R(M)$ is prime. If M is a sgH R-module, then M is a S-quasi-Dedekind R-module.

Proof. Since *M* is a scalar *R*-module, thus by remark 7 $End_R(M) \cong R/ann_R(M)$. Thus $End_R(M)$ is an integral domain. Hence for each $f \in End_R(M)$, $f \neq 0$, *f* is nonzero divisor and since *M* is *sgH*, so we get $Kerf \ll M$. Thus $Kerf \ll_s M$ and so *M* is a S-quasi-Dedekind *R*-module.

Proposition 27 Let M be an anti-Hopfian R-module. If M is a sgH R-module, then M is a S-quasi-Dedekind R-module.

Proof. Since *M* is anti-Hopfian, then by ((Hirano & all (1986)), Theorem 14 P.129) $End_R(M)$ is an integral domain, so that for each $f \in End_R(M)$, $f \neq 0$ implies *f* is nonzero divisor. Hence

Kerf $\ll M$, since M is sgH. Thus Kerf $\ll_s M$ and so M is a S-quasi-Dedekind R-module.

Definition 18 Let M be an R-module, put $\mathbb{Z}(M) = \{m \in M : ann_R(m) \leq_e R\}$. M is called nonsingular if $\mathbb{Z}(M) = \{0\}$, and singular if $\mathbb{Z}(M) = M$.

Lemma 12 Let $f: M \longrightarrow M'$ of homomorphism of right *R*-modules. If $N \leq_e M'$, $f^{-1}(N) \leq_e M$.

Proof. Consider any $e \in M \setminus f^{-1}(N)$. Then $f(e) \neq 0$, so there exists $r \in R$ such that $f(e)r \in N \setminus \{0\}$. Then cleary $er \in f^{-1}(N) \setminus \{0\}$. Thus $f^{-1}(N) \leq_e M$.

Remark 9 Given $N \leq_e M'$ and any element $y \in M'$, let $f : R_R \longrightarrow M'$ be defined by f(r) = yr. Then the lemma 12 implies $f^{-1}(N) = y^{-1}N = \{r \in R : yr \in N\} \leq_e R_R$.

Proposition 28 Let M be a nonsingular uniform R-module. Then M is a S-quasi-Dedekind R-module.

Proof. Let $f \in End_R(M)$ such that $f \neq 0$. Then $Kerf = \{0\}$. If $Kerf \neq \{0\}$, then $Kerf \leq_e M$. For any $y \in M$, $y^{-1}Kerf \leq_e R_R$ by remark 9.

Now $f(y).y^{-1}Kerf \subseteq f(y.y^{-1}Kerf) \subseteq f(Kerf) = \{0\}$, so $f(y) \in \mathbb{Z}(M) = \{0\}$, that is f = 0, a contradiction. Then

Kerf = {0}, and so Kerf $\ll_s M$. Thus M is S-quasi- Dedekind.

Corollary 7 Let M be a nonsingular uniform R-module. If M is injective, then E(M) is a S-quasi-Dedekind R-module.

Proof. Since M is injectif, then E(M) = M. By proposition 28, E(M) is a S-quasi-Dedekind R-module.

Remark 10 If *M* is a nonsingular module, then by (Lam, T. Y. (1999), P.277) $\overline{E}(M) = E(M)$, where $\overline{E}(M)$ is the rational hull of *M*.

Corollary 8 Let M be a nonsingular uniform R-module. If M is injectif, then $\overline{E}(M)$ is a S-quasi-Dedekind R-module.

Proof. We have $\overline{E}(M) = E(M) = M$. Thus $\overline{E}(M)$ is a S-quasi-Dedekind *R*-module.

Proposition 29 Let M be an R-module such that $Hom_R(S, M) = \{0\}$ for any singular module S. If M is uniform, then M is a S-quasi-Dedekind R-module.

Proof. Let S be a singular R-module such that $Hom_R(S, M) = \{0\}$. Then M is nonsingular R-module. If M is not nonsingular, then $S = \mathbb{Z}(M)$ is a nonzero singular module, and the inclusion map $S \longrightarrow M$ is a nonzero element in $Hom_R(S, M)$, a contradiction. Thus M is a nonsingular uniform R-module, and so by proposition 28 M is a S-quasi-Dedekind R-module.

Proposition 30 Let M be a nonsingular R-module. If M is quasi-injective and indecomposable, then M is a S-quasi-Dedekind R-module.

Proof. We have *M* is uniform. If *M* is not uniform, then $N \cap K \neq \{0\}$, where $N \neq \{0\} \neq K$ in *M*. Upon taking E(N) and E(K) inside E(M), we have $E(N) + E(K) = E(N) \oplus E(K)$ is injective, we may write $E(M) = E(N) \oplus E(K) \oplus X$, for some $X \subseteq E(M)$. By (Lam,T. Y. (1999), P.239) $M = (M \cap E(N)) \oplus (M \oplus E(K)) \oplus (M \cap X)$. Since $M \cap E(N) \neq \{0\} \neq M \cap E(K)$, then *M* is decomposable, which is a contradiction. Now, *M* is nonsingular uniform *R*-module, and by proposition 28, *M* is a S-quasi-Dedekind *R*-module.

Lemma 13

1. If $f: M \longrightarrow M'$ is any *R*-homomorphism, then $f(\mathbb{Z}(M)) \subseteq \mathbb{Z}(M')$.

2. If
$$M \subseteq M'$$
, then $\mathbb{Z}(M) = M \cap \mathbb{Z}(M')$.

Proof.

1. Follows from the fact $ann_R(m) \subseteq ann_R(f(m))$ for any $m \in M$.

2. Follows directly from the definition.

Proposition 31 Let M be an R-module and let $0 \neq N \leq M$ such that N and M/N are both nonsingular. If M is uniform, then M and N are both S-quasi-Dedekind R-modules.

Proof. First show that *M* is a S-quasi-Dedekind *R*-module. By lemma 13, we have $\mathbb{Z}(M) \cap N = \mathbb{Z}(N) = \{0\}$. Therefore the projection map from *M* to *M*/*N* induces an injective homomorphism $\pi : \mathbb{Z}(M) \longrightarrow M/N$. Thus by lemma 13, we have $\pi(\mathbb{Z}(M)) \subseteq \mathbb{Z}(M/N) = \{0\}$, so $\pi = 0$. This implies that $\mathbb{Z}(M) = \{0\}$. Then *M* is a nonsingular uniform *R*-module, and so by proposition 28, *M* is a S-quasi-Dedekind *R*-module. It is clear that *N* is a nonsingular uniform *R*-module. Then *N* is a S-quasi-Dedekind *R*-module.

Proposition 32 Let M be an R-module all of whose nonzero quotients have minimal submodules such that Soc(M) is nonsingular. If M is uniform, then M is a S-quasi-Dedekind R-module.

Proof. Assume that Soc(M) is nonsingular. Then $Soc(M) \cap \mathbb{Z}(M) = \{0\}$, so Soc(M) can be enlarged to a complement Q of $\mathbb{Z}(M)$. We have M is nonsingular R-module. If $\mathbb{Z}(M) \neq \{0\}$, then, by given assumption on M, there exists $T \supseteq Q$ such that T/Q is simple, $T \cap \mathbb{Z}(M) \subseteq Soc(M)$, a contradiction. Then M is nonsingular. Thus M is a nonsingular uniform R-module, and so by proposition 28, M is a S-quasi-Dedekind R-module.

4. Some Properties of the Endomorphism Ring of S-quasi-Dedekind Module

Proposition 33 Let M be a simple R-module. Then $End_R(M)$ is a S-quasi-Dedekind ring.

Proof. By Schur's lemma $End_R(M)$ is a division ring. Thus $End_R(M)$ is a S-quasi-Dedekind ring.

Proposition 34 Let M be an anti-Hopfian R-module. Then $End_R(M)$ is a S-quasi-Dedekind ring. Proof. Since M is anti-Hopfian, then by (Hirano, Y. & all (1986), Theorem 14, P.129), $End_R(M)$ is an integral domain. Thus $End_R(M)$ is a S-quasi-Dedekind ring.

Proposition 35 Let M be a nonsingular uniform R-module. Then $End_R(M)$ is a S-quasi-Dedekind ring.

Proof. Let $f \neq 0 \neq g \in End_R(M)$, then by the proposition 28, f, g are injectives and so $fg \neq 0$. Thus $End_R(M)$ is an integral domain. Hence $End_R(M)$ is a S-quasi-Dedekind ring.

Proposition 36 Let M be a scalar R-module with $ann_R(M)$ is a prime ideal of R, then $End_R(M)$ is a S-quasi-Dedekind ring.

Proof. Since *M* is a scalar *R*-module, then by remark 7, $End_R(M) \cong R/ann_R(M)$, so $End_R(M)$ is an integral domain. Hence $End_R(M)$ is a S-quasi-Dedekind ring.

Corollary 9 If M is scalar and prime R-module, then $End_R(M)$ is a S-quasi-Dedekind ring.

Proposition 37 Let M be a scalar faithful R-module. $End_R(M)$ is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that *M* is scalar *R*-module, so by remark 7, $End_R(M) \cong R/ann_R(M)$. But *M* is faithful, thus $R/ann_R(M) \cong R$, so $End_R(M) \cong R$. Hence we have on the result.

Proposition 38 Let *R* be an Artinian principal ideal ring and let *M* be a weakly co-Hopfian multiplication faithful *R*-module. Then $End_R(M)$ is a *S*-quasi-Dedekind ring if and only if *R* is a *S*-quasi-Dedekind ring.

Proof. Suppose that M is a weakly co-Hopfian R-module, so M is a finitely generated R-module. Thus by (Naoum, A.G. (1990), theorem 3.2), M is scalar R-module; that is M is scalar faithful R-module. Thus by proposition 37, the result is obtained.

Proposition 39 Let *R* be an Artinian principal ideal ring and let *M* be a co-Hopfian multiplication faithful *R*-module. Then $End_R(M)$ is a S-quasi-Dedekind ring if and only if *R* is a S-quasi-Dedekind ring.

Proof. Suppose that M is co-Hopfian R-module, so M is a finitely generated R-module. Thus M is scalar R-module; that is M is scalar faithful R-module. Thus by proposition 37, the result is obtained.

Proposition 40 Let R be an Artinian principal ideal ring and let M be a Dedekind finite multiplication faithful R-module. Then $End_R(M)$ is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that M is a Dedekind finite R-module, so M is a finitely generated R-module. Thus M is scalar R-module; that is M is scalar faithful R-module. Thus by proposition 37, the result is obtained.

Definition 18 Let M be an R-module. M is said quasi-prime if $ann_R(N)$ is a prime ideal of R.

Proposition 41 Let *M* be a quasi-injective scalar and quasi-prime *R*-module. Then $End_R(N)$ is a *S*-quasi-Dedekind ring for all $0 \neq N \leq M$.

Proof. Assume that $0 \neq N \leq M$. Since *M* is a quasi-injective scalar *R*-module, then by (Shibab, B.N. (2004), Prop. 1.1.16), *N* is a scalar *R*-module. Thus by remark 7, $End_R(N) \cong R/ann_R(N)$. But *M* is a quasi-prime *R*-module, so $ann_R(N)$ is a prime ideal of *R*; that is $End_R(N)$ is an integral domain. Hence $End_R(N)$ is a S-quasi-Dedekind ring.

Corollary 10 Let M be an injective scalar and quasi-prime R-module. Then $End_R(N)$ is a S-quasi-Dedekind ring for all $0 \neq N \leq M$.

Corollary 11 Let M be a quasi-injective scalar R-module and let $0 \neq N \leq M$ be a faithful R-module. Then $End_R(N)$ is a S-quasi-Dedekind ring for all $0 \neq N \leq M$.

Proof. It follows by (Shibab, B.N. (2004), Prop. 1.1.16) and proposition 37.

References

Abdullah, N. K., & Mijbass, A. S. (2011). Semi-Small Submodules. Tikrit Journal of Pure Science, 16(1).

Ali, A. H. (2010). On Hollow-Lifting Modules, Phd, thesis, College of Science, University of Baghdad.

Anderson, F. W., & Fuller, K. R. (1973). Rings and category of modules, New York, Springer-Verlag.

Barry, M., & Diop, P. C. (2010). Some properties related to commutative weakly FGI-rings. *JP Journal of Algebra*, *Number theory and applicatio*, *19*, 141-153.

Barry, M., & Diop, P. C. (2011). On Commutative FDF-Rings, International Mathematical Forum, 6(53), 2637-2644.

Barry, M., Gueye, C. T., & Sanghare, M. (1997). On Commutative FGI-rings. *EXTRACTA MATHEMATICAE*, 12(3), 255-259.

El-Bast, Z. A., & Smith, P. F. (1988). Multiplication modules. Comm. Algebra, 16(4), 755-799.

https://doi.org/10.1080/00927878808823601

- Ghawi, T. Y. (2010). Some Generalization of Quasi-Dedekind Modules, M. Sc Thesis, College of Education Ibn-AL-Haitham, University of Baghdad.
- Ghorbani, A., & Haghany, A. (2002). *Generalized Hopfian Modules*. J. Agebra, 255, 324-341. https://doi.org/10.1016/S0021-8693(02)00124-2
- Hirano, Y., & Mogami, I. (1986). On restricted anti-Hopfian Modules. Math. J. Okayama University, 28, 119-131.
- Kasch, F. (1982). Modules and Rings, Academic press, London.
- Lam, T. Y. (2010). Exercises in Modules and Rings, Springer-Verlag, New York.
- Lam, T. Y. (1999). Lectures on modules and rings, Springer-Verlag, Berlin-Heidelber, New York. https://doi.org/10.1007/978-1-4612-0525-8

Mijbass, A. S. (1997). Quasi-Dedekind Modules, Ph. D. Thesis, College of Science University of Baghdad,

- Mohamed-Ali, E. A. (2006). On Ikeda-Nakayama Modules, Ph. D. Thesis, College of Education Ibn-AL-Haitham, University of Baghdad.
- Naoum, A. G. (1990). On the rings of endomorphism of finitely Multiplication Modules. *Periodica Math, Hungarica,* 21(3), 249-255. https://doi.org/10.1007/BF02651092
- Shibab, B. N. (2004). *Scalar reflexive Modules*. Ph. D. Thesis, College of Education Ibn-AL-Haitham, University of Baghd ad.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).