On FGDF-modules
- Alhousseynou BA
- Sidy Touré
- Oumar Diankha
Abstract
Let R be a unital ring and M a unitary module not necessary over R. The FGDF-module is a generalization of FGDF-rings (Touré, Diop, Mohamed and Sangharé, 2014). In this work, we first give some properties of FGDF-modules. After that, we show that for a finitely generated module M, M is a FGDF-module if and only if M is of finite representation type module. Finally, we show that M is a finitely generated FGDF-module if and only if every Dedekind finite module of $\sigma[M]$ is noetherian.
- Full Text: PDF
- DOI:10.5539/jmr.v9n4p196
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org