On FGDF-modules

Alhousseynou BA1, Sidy Demba Touré1 & Oumar Diankha1

¹ Department of mathematiques and Computer Sciences, Faculty of Sciences and Technics, Cheikh Anta Diop University, Dakar, Senegal

Correspondence: Alhousseynou BA, Department of mathematiques and Computer Sciences, Faculty of Sciences and Technics, Cheikh Anta Diop University, Dakar, Senegal. E-mail: alhousseynou.ba@ucad.edu.sn

Received: April 24, 2017 Accepted: May 29, 2017 Online Published: July 25, 2017

doi:10.5539/jmr.v9n4p196 URL: https://doi.org/10.5539/jmr.v9n4p196

Abstract

Let *R* be a unital ring and *M* a unitary module not necessary over *R*. The *FGDF*-module is a generalization of *FGDF*rings (Touré, Diop, Mohamed and Sangharé, 2014). In this work, we first give some properties of *FGDF*-modules. After that, we show that for a finitely generated module *M*, *M* is a *FGDF*-module if and only if *M* is of finite representation type module. Finally, we show that *M* is a finitely generated *FGDF*-module if and only if every Dedekind finite module of $\sigma[M]$ is noetherian.

Keywords: finitely generated module, Dedekind finite module, FGDF-module

1. Introduction

We assume that *R* is a unity ring and *M* a unitary module not necessary over *R*. Let *M* and *N* be *R*-modules. *N* is said to be generated by *M* if there exist a set Λ and an epimorphism $\varphi : M^{(\Lambda)} \longrightarrow N$. A submodule *K* of *N* is said subgenerated by *M*. The set of submodules of *N* constitutes the category $\sigma[M]$. It is a full subcategory of *R*-Mod whose objects are submodules of a module generated by *M* (Wisbauer, 1991).

A module *M* is said to a prime module if for any submodule *N* of *M* Ann(N) = Ann(M). A module *M* is faithful if Ann(M) = 0. A module *M* is said semisimple if it is direct sum of simple modules. A module *M* is Hopfian if every surjective endomorphism of *M* is an automorphism. *M* is a Dedekind finite module if it is not isomorphic to any proper direct summand of itself. A module *M* is said to be of finite representation type if it is of finite length and there are only a finite number of non isomorphic finitely generated indecomposable modules in $\sigma[M]$. A ring *R* is said to be duo-ring if any one sided ideal is two sided.

The aim of this paper comes from to the following assertion. It is well know that in a commutative ring every finitely generated module is Dedekind finite but the converse is not always true. For instance the \mathbb{Z} -module \mathbb{Q} is Dedekind finite but not finitely generated. In this paper, we study the modules *M* for which every Dedekind finite module in $\sigma[M]$ is finitely generated. Those modules are called *FGDF*-modules.

2. Some Properties of *FGDF* -modules

Lemme 1: (Ghorbani and Haghany, 2002) corollary 1.4

Let R be a ring and M a R-module. If M is Hopfian then it is Dedekind finite.

Proposition 1:

Let *R* be a ring and *M* a *R*-module. If *M* is a *FGDF*-module then, there exists a finite number of non-isomorphic simple modules in $\sigma[M]$.

Proof: Let $\{N_i\}_I$ be a complete system of non-isomorphic class of simple modules. Let $f : N_i \longrightarrow N_i$ an epimorphism with $f \neq 0$ and $i \in I$. As N_i is simple then ker f = 0, hence, N_i is Hopfian for any $i \in I$. Let $N = \bigoplus_{i \in I} N_i \in \sigma[M]$. Since each N_i is Hopfian and fully invariant then, N is Hopfian. Therefore N is Dedekind finite by lemma 1. Since M is a *FGDF*-module then, N is finitely generated. Hence I is finite.

Proposition 2:

Let *R* be a duo ring and *M* a finitely generated and prime module over End(M). If *M* is a *FGDF*-module then, *M* is a simple.

Proof:

As M is finitely generated, we have an epimorphism $f : R \to M$. It is obvious to see that $R/Ann(M) \simeq M$ by the first

theorem of isomorphism. It follows from 15.4 of (Wisbauer, 1991) that $\sigma[M] = R/Ann(M)$ -Mod. Since *M* is a *FGDF*-module, then R/Ann(M) is a *FGDF*-ring. It results from (Touré, Diop and Sangharé, 2014) that R/Ann(M) is artinian. Hence *M* is artinian too. Therefore, there exists a simple submodule in *M*. Let $g : R \to N$ be an epimorphism with *N* the simple submodule of *M*. Therefore $R/Ann(N) \simeq N$. Since *M* is a prime module, then R/Ann(M) = R/Ann(N) is simple.

Corollary 1:

Let *R* be a duo ring and *M* a finitely generated, prime and faithful module over End(M). If *M* is a *FGDF*-module then, *R* is a field.

Proof:

We have already shown in proposition 2 that R/Ann(M) is isomorphic to a simple module N. As M is a faithful then, Ann(M) = Ann(N) = 0. Hence R is a field.

Proposition 3:

Let M be a module over End(M), then the following conditions are verifyed:

(1) The homomorphism image of any *FGDF*-module is a *FGDF*-module;

(2) Let $M = \prod_{i \in I} M_i$ be a product of its submodules.

If *M* is a *FGDF*-module then M_i is a *FGDF*-module for each $i \in I$.

The converse is true if for any module *N* of $\sigma[M]$ its submodules are fully invariant and $\sigma[M_i] \cap \sigma[M_j] = 0$ with $i \neq j$ in *I* finite.

Proof:

(1) Let $f: M \to f(M) = L$ a homomorphism image of M. Therefore L is generated by M. That means $L \in \sigma[M]$. Let's consider the subcategory $\sigma[L]$ and K a Dedekind finite object of $\sigma[L]$. Since K is also in $\sigma[M]$ and M is a *FGDF*-module then K is finitely generated. Hence L is a *FGDF*-module.

(2) Assume $M = \prod_{i \in I} M_i$ a *FGDF*-module and $f : \prod_{i \in I} M_i \to M_i$ an epimorphism. It follows from (1) that, for any $i \in I$, M_i is a *FGDF*-module.

Now consider, for each $i \in I$, M_i is a *FGDF*-module. As *I* is finite, then $\prod_{i \in I} M_i$ is isomorphic to $\bigoplus_{i \in I} M_i$. Suppose *N* a Dedekind finite element of $\sigma[M]$. Since $\sigma[M_i] \cap \sigma[M_j] = 0$ with $i \neq j$ in *I*, it follows from proposition 2.2 of (Vanaja, 1996) that $N = \bigoplus_{i \in I} N_i$ and $N_i \in \sigma[M_i]$. As, for each $i \in I$, N_i is Dedekind finite then, N_i is finitely generated. Hence $N = \bigoplus_{i \in I} N_i$ is finitely generated since I is finite.

It is well know that a homomorphism image, a submodule or a factor of a Dedekind finite module is not in general a Dedekind finite module (Breaz, Cälugäreau and Schulz, 2011) but:

Proposition 4:

If *M* is a *FGDF*-module, then the homomorphism image of every Dedekind finite module of $\sigma[M]$ is a Dedekind finite module.

Proof:

Let $N \in \sigma[M]$ be a Dedekind finite module, as M is *FGDF*-module then N is finitely generated. Assume that f is a homomorphism image of N such that $f : N \to f(N) = K$. It is well-know that the homomorphism image of a finitely generated module is finitely generated then, K is finitely generated. Hence, K is Dedekind finite module.

Proposition 5:

If *M* is a *FGDF*-module then, every factor of a Dedekind finite module in $\sigma[M]$ is a Dedekind finite module. Moreover if *M* is finitely generated then, every submodule of a Dedekind finite module in $\sigma[M]$ is Dedekind finite.

Proof: Let *N* be a Dedekind finite object of $\sigma[M]$, hence *N* is finitely generated. Thus for every submodule *L* of *N*, *N/L* is finitely generated, hence a Dedekind finite module.

Now let's show that any submodule K of N is a Dedekind finite. Since N is finitely generated and is a module of over R/Ann(M) which is artinian(proposition 2), therefore N is noetherian by 15.21 of (Anderson and Fuller, 1974). It is well know that any submodule of noetherian module is finitely generated. Therefore K is finitely generated, hence of Dedekind finite.

Corollary 2:

Let $M = \bigoplus_{i \in I} M_i$ be a *FGDF*-module with *I* finite.

M is a Dedekind finite module if and only if M_i is a Dedekind finite module for any $i \in I$.

Proof:

Assume *M* is Dedekind finite module. It follows from proposition 5 that M_i is a Dedekind finite module for any $i \in I$.

Now let's suppose that, for any $i \in I$, M_i is a Dedekind finite module. As $M_i \in \sigma[M]$ then M_i is finitely generated for any $i \in I$. Since *I* is finite, therefore $M = \bigoplus_{i \in I} M_i$ is finitely generated. Hence, *M* is a Dedekind finite module.

3. Characterizations of FGDF -modules

Theorem 1:

Let R be a duo-ring and M a finitely generated End(R)-module. Then, the following assertions are equivalent:

(1) *M* is a *FGDF*-module;

(2) M is of finite representation type.

Proof:

(1) \Rightarrow (2) By the proposition 2, *M* is artinian. It results from 15.21 of (Anderson and Fuller 1974) that *M* is of finite length. It follows from proposition 1 that *M* is of finite representation type.

 $(2) \Rightarrow (1)$ We have already seen that $M \simeq R/Ann(M)$. Therefore R/Ann(M) is a finite representation type. It results from theorem 3.3 (Fall and Sangharé, 2002), theorem 1.5 (Barry, Bazubwabo and Diop, 2010) and theorem 2.1 (Touré, Diop, Mohamed, Sangharé, 2014) that *M* is a *FGDF*-module.

Theorem 2:

Let *M* be a finitely generated module and $\{M_{\lambda}, \lambda \in \Lambda\}$ a finite set of modules. Then the following conditions are equivalent:

(1) *M* is a *FGDF*-module;

(2) Every Dedekind finite module of $\sigma[M]$ is noetherian.

Proof:

(1) \Rightarrow (2) Let *N* be a Dedekind finite module of $\sigma[M]$, We have showed in proposition 5 that any submodule of *N* is Dedekind finite. As *M* is a *FGDF*-module, then any submodule of *N* is finitely generated. Thus, *N* is noetherian.

 $(2) \Rightarrow (1)$ As *M* is finitely generated, therefore *M* is a Dedekind finite module, hence noetherian. Let $f : M^{(\Lambda)} \to N$ an epimorphism. It results from the first theorem of isomorphism that $M^{(\Lambda)}/\ker(f) \simeq N$. Therefore *N* is noetherian. Hence any submodule of *N* is finitely generated.

Corollary 3:

Let M be a semisimple module. Then, the following assertions are equivalent:

(1) *M* is a *FGDF*-module;

(2) Every Dedekind finite module of $\sigma[M]$ is finitely cogenerated.

Proof:

(1) \Rightarrow (2) Let's show first that *M* is finitely generated. As *M* is semisimple, then $M = \bigoplus M_{i \in I}$ where M_i is simple for any $i \in I$. Let $f : M_i \longrightarrow M_i$ an epimorphism with $f \neq 0$. Since M_i is simple then Kerf = 0. Therefore, M_i is Hopfian for any $i \in I$. As, for any $i \in I$, M_i is fully invariant. Therefore *M* is Hopfian, hence it is Dedekind finite. In particular $M \in \sigma[M]$ and as *M* is a *FGDF*-module then *M* is finitely generated.

Let *N* be a Dedekind finite module of $\sigma[M]$ then, *N* is finitely generated. It follows from proposition 2 that *N* is a module over R/Ann(M) which is an artinian ring. It results from 10.18 (Anderson and Fuller 1974) that *N* is finitely cogenerated.

 $(2) \Rightarrow (1)$ Let *N* be Dedekind finite module, then *N* is finitely cogenerated. As *M* is semisimple, every module of $\sigma[M]$ is semisimple. Hence it follows from 10.6 (Anderson and Fuller 1974) that *N* is finitely generated.

References

- Anderson, F. W., & Fuller, K. (1974). *Rings and categories of modules*, Springer-Verlag. https://doi.org/10.1007/978-1-4684-9913-1
- Barry, A., Bazubwabo, E., & Diop, P. C. (2010). On Certain Class of Duo Rings Verifying Properties (I) and (S). *International Journal of Algebra*, 4(21), 1037-1044.
- Breaz, S., Cälugäreau, G., & Schulz, P. (2011). Modules with Dedekind finite endomorphism rings. *Mathematica, tome* 53(76), n1, 15-18
- Fall A. L & Sangharé M.: On I-duo rings, Publication Mathematiques de Besancon, Theorie des nombres (2002) 1-6.
- Ghorbani, A., & Haghany, A. (2002). On generalized hopfian module. *Journal of Algebra*, 255, 324-341. https://doi.org/10.1016/S0021-8693(02)00124-2
- Touré, S. D., Diop, K., & Mohamed, S. M. O., Sangharé, M. (2014). A Characterization of Duo-Rings in which Every Dedekind Finite module is Finitely generated. *International Mathematical Forum*, 9(15), 733 - 736. https://doi.org/10.12988/imf.2014.4352
- Vanaja, N. (1996). All finitely generated *M*-subgenerated modules are extending. *Comm. Algebra*, 24(2), 543-572. https://doi.org/10.1080/00927879608825585
- Wisbauer, R. (1991). Foundation of Module and Ring theory. Gordon and Breach Science Publishers.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).