On Certain Hypergeometric Summation Theorems Motivated by the Works of Ramanujan, Chudnovsky and Borwein
- M. I. Qureshi
- Izharul H. Khan
- M. P. Chaudhary
Abstract
In the present paper, we obtain numerical values for Gaussian
hypergeometric summation theorems by giving particular values to the
parameters $a,~b$ and the argument $x$; three summation theorems for
${}_{2}F_{3}(\frac{1}{4},\frac{3}{4};\frac{1}{2},\frac{1}{2},1;x)$,
three summation theorems for
${}_{4}F_{3}(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{a+b}{b};1,1,\frac{a}{b};x)$,
two summation theorems for
${}_{4}F_{3}(\frac{1}{2},\frac{1}{3},\frac{2}{3},\frac{a+b}{b};1,1,\frac{a}{b};x)$,
four summation theorems for
${}_{4}F_{3}(\frac{1}{2},\frac{1}{6},\frac{5}{6},\frac{a+b}{b};1,1,\frac{a}{b};x)$
and ten summation theorems for
${}_{4}F_{3}(\frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{a+b}{b};1,1,\frac{a}{b};x)$.
- Full Text: PDF
- DOI:10.5539/jmr.v2n3p196
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org