On Certain Hypergeometric Summation Theorems Motivated by the Works of Ramanujan, Chudnovsky and Borwein


  •  M. I. Qureshi    
  •  Izharul H. Khan    
  •  M. P. Chaudhary    

Abstract

In the present paper, we obtain numerical values for Gaussian
hypergeometric summation theorems by giving particular values to the
parameters $a,~b$ and the argument $x$; three summation theorems for
${}_{2}F_{3}(\frac{1}{4},\frac{3}{4};\frac{1}{2},\frac{1}{2},1;x)$,
three summation theorems for
${}_{4}F_{3}(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{a+b}{b};1,1,\frac{a}{b};x)$,
two summation theorems for
${}_{4}F_{3}(\frac{1}{2},\frac{1}{3},\frac{2}{3},\frac{a+b}{b};1,1,\frac{a}{b};x)$,
four summation theorems for
${}_{4}F_{3}(\frac{1}{2},\frac{1}{6},\frac{5}{6},\frac{a+b}{b};1,1,\frac{a}{b};x)$
and ten summation theorems for
${}_{4}F_{3}(\frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{a+b}{b};1,1,\frac{a}{b};x)$.



This work is licensed under a Creative Commons Attribution 4.0 License.