Symmetric Boundary Condition for Laplacian on Net of Regular Hexagons
- Daniel Lee
Abstract
Hexagonal grid methods are found useful in many research works, including numerical modeling in spherical coordinates, in atmospheric and ocean models, and simulation of electrical wave phenomena in cardiac tissues. Almost all of these used standard Laplacian and mostly on one configuration of regular hexagons. In this work, discrete symmetric boundary condition and energy product for anisotropic Laplacian are investigated firstly on general net of regular hexagons, and then generalized to its most extent in two- or three-dimensional cell-center finite difference applications up to the usage of symmetric stencil in central differences. For analysis of Laplacian related applications, this provides with an approach in addition to the M-matrix theory, series method, functional interpolations and Fourier vectors.- Full Text: PDF
- DOI:10.5539/jmr.v9n3p46
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org