The Separable Complementation Property and Mrówka Compacta
- Jesus Ferrer
Abstract
We study the separable complementation property for $C(K_{\cal A})$ spaces when $K_{\cal A}$ is the Mr\'owka compact associated to an almost disjoint family ${\cal A}$ of countable sets. In particular we prove that, if ${\cal A}$ is a generalized ladder system, then $C(K_{\cal A})$ has the separable complementation property ($SCP$ for short) if and only if it has the controlled version of this property. We also show that, when ${\cal A}$ is a maximal generalized ladder system, the space $C(K_{\cal A})$ does not enjoy the $SCP$.
- Full Text: PDF
- DOI:10.5539/jmr.v9n5p30
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org