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Abstract

We study the separable complementation property for C(KA) spaces when KA is the Mrówka compact associated to an
almost disjoint family A of countable sets. In particular we prove that, if A is a generalized ladder system, then C(KA)
has the separable complementation property (S CP for short) if and only if it has the controlled version of this property.
We also show that, whenA is a maximal generalized ladder system, the space C(KA) does not enjoy the S CP.
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1. Introduction

In previous papers, see (Ferrer, J., 2009; Ferrer, J. & Wójtowicz, M., 2011; Ferrer, J., Koszmider, P. & W. Kubiś, 2013;
Ferrer, J., 2014; Ferrer, J., 2009), we studied the controlled version of the separable complementation property (CS CP,
for short) for general Banach spaces and in particular for C(KA) spaces when KA is the Mrówka compact associated to an
almost disjoint family A of countable subsets of a given set. After seeing that K being monolithic, see (Arkhangel’skii,
A. V., 1992), is a necessary condition in order that the space C(K) enjoys the CS CP, we proved this condition to be
sufficient when K is a Mrówka compact and moreover we also showed that this condition suffices in general when K is a
scattered compact such that each of its points, except possibly the ones in the top layer, admit a countable neighborhood
base. When A is a maximal almost disjoint family, i.e., a mad family, since there are countably infinite sets which have
an uncountable closure, it follows that the Mrówka compact KA is not monolithic and so C(KA) cannot have the CS CP.
However, we do not know wether C(KA), for A mad, may have the S CP. In this paper we try to give an answer to this
problem.

ForA being a generalized ladder system, we prove that C(KA) has the S CP if and only if it has the CS CP, which equals
saying that KA must be monolithic. Consequently, we obtain that, forA a maximal generalized ladder system, the space
C(KA) does not have the S CP.

In the following, if K is a compact topological space (always Hausdorff), by C(K) we mean the Banach space formed by
all real-valued continuous functions defined in K provided with the sup norm. For A being a subset of the compact K, by
CA(K) we denote the closed subspace of C(K) formed by the functions which vanish in each point of A.

2. About Almost Disjoint Families

For the sake of completeness, we shall give some auxiliary details concerning almost disjoint families, maximal almost
disjoint families and their associated Mrówka compacta.

Let S be an infinite set. A collection A of countably infinite subsets of S is said to be almost disjoint whenever every
two distinct members ofA have finite intersection. We shall assume in the following thatA is an infinite almost disjoint
family. By Zorn’s Lemma, it is easy to see that there exist almost disjoint families which are maximal respect to set-
inclusion, such families are called mad families.

Let ψ(S ,A) denote the space with underlying set S ∪A and with the topology having as a base all singletons {s} for s ∈ S ,
and all sets of the form {A} ∪ B where A ∈ A and B is a cofinite subset of A. For S = N, the positive integers, and A a
mad family in N, the space ψ(N,A) was studied by Mrówka (Mrówka, S., 1977). Also, for S uncountable and A mad,
some properties of the space ψ(S ,A) are studied in (Dow, A. & Vaughan, J. E., 2009).

It is simple to check that ψ(S ,A) is a Hausdorff first countable locally compact space such that S is dense. By KA we
denote the one-point compactification of ψ(S ,A), i.e., KA = ψ(S ,A) ∪ {∞}, and it is known as a Mrówka compact. It is
also straightforward to notice that KA is a scattered compact of height 3.

1The author has been partially supported by MINECO and FEDER Project MTM2014-57838-C2-2-P.
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Mrówka compacta, although apparently quite simple to understand, have turned out to be a class in which the properties
of having the S CP, having the CS CP or being weakly compactly generated, which for these C(K) spaces is equivalent to
be isomorphic to some c0(Γ), can be separated for the corresponding function spaces. In (Ferrer, J., Koszmider, P. & W.
Kubiś, 2013) an example of a Mrówka compact KA is given such that C(KA) has the S CP but not the CS CP, and also
in that reference a broad class of Mrówka compacta whose function space enjoys the CS CP but cannot be isomorphic to
any c0(Γ) space is highlighted, namely the non-trivial ladder systems in ω1.

The following is a basic result on the structure of mad families. Given two subsets of S , by A ⊂∗ B we mean that A \ B is
a finite set and we shall say that A is almost contained in B.

Lemma 1. Let A be a mad family in S . Then, for each infinite sequence {A j : j ≥ 1} of distinct members of A, the
closure in KA of the set ∪ j≥1A j has uncountable cardinality.

Proof. Let {A j : j ≥ 1} be an infinite sequence of distinct members of the mad familyA. Let N := ∪ j≥1A j. We consider
the following subfamily ofA

AN := { A ∈ A : A ∩ N is an infinite set }.
Then, it is easy to see that the closure of N in KA, which we denote by N, is

N = N ∪ AN ∪ {∞}.

Hence, it all reduces to show that the collection AN is not countable. Assuming this is not so, let us suppose that
AN = {B j : j ≥ 1}. It is obvious, since AN contains the collection {A j : j ≥ 1}, that the sequence {B j : j ≥ 1} has
infinite terms. We construct inductively the set C = {s j : j ≥ 1} such that, for each j, s j ∈ N ∩ B j \ B1 \ ... \ B j−1:

For j = 1, since N ∩ B1 has infinitely many elements, take s1 to be any element of N ∩ B1. For j = 2, since N ∩ B2 is
infinite and B2 ∩ B1 is finite, take s2 ∈ N ∩ B2 \ B1. For j = 3, since N ∩ B3 is infinite and B3 ∩ (B2 ∪ B1) is finite, take
s3 ∈ N ∩ B3 \ B1 \ B2, and so on. Hence, we have that, for each j ≥ 2, s j ∈ N ∩ B j \ B1 \ ... \ B j−1. Clearly, the set C is a
countably infinite subset of S . Besides, given an arbitrary member A ∈ A, we consider two possibilities:

Case 1. A < AN . Then, this means that A ∩ N is finite and, since C ⊆ N, it follows that A ∩C is also finite.

Case 2. A ∈ AN . Now, there is j ≥ 1 such that A = B j. Thus, the intersection A ∩ C = B j ∩ C is also finite, since it is
contained in the set {s1, s2, ..., s j}.
We have then shown thatA∪ {C} is an almost disjoint family. Since C < A, this contradicts the maximality ofA. 2

In the following we recall the notion of ladder system in ω1. Ladder systems were originally used by R. Pol, see (Pol, R.,
1979), to give the first example of a weakly Lindelöf C(K) space such that K is not a Corson compact. We used ladder
systems in (Ferrer, J., Koszmider, P. & W. Kubiś, 2013) to prove that there are Mrówka compact spaces KA which are
monolithic, hence its associated function space C(KA) has the CS CP, but KA is not even a continuous image of a Valdivia
compact and so C(KA) is not isomorphic to any c0(Γ) space.

We shall start by stating what a ladder system in ω1 is: Given a set L of countable limit ordinals, a ladder system indexed
by L is a family of the form

AL = {Aδ : δ ∈ L },
where, for each δ ∈ L, Aδ = {αδ j : j ≥ 1} is a strictly increasing sequence of ordinals such that sup j αδ j = δ. It
is straightforward that AL is always an almost disjoint family in ω1 such that its associated Mrówka compact KAL is
monolithic. When the set L is stationary, i.e., it intersects every order-closed unbounded (club) subset of ω1, see (Jech,
T., 2003), then the ladder system AL is said to be non-trivial and the Mrówka compact KAL is no continuous image of a
Valdivia compact.

We now introduce the notion of generalized ladder system in ω1. For a set A of countable ordinals, by A(1) we denote
the set of all order-accumulation points of A. An almost disjoint family A in the set ω1 is said to be a generalized ladder
system whenever, for each A ∈ A, we have that A(1) = {sup(A)}. Notice that, although every ladder system is a generalized
ladder system, both notions are different since, in a ladder system, given δ ∈ L, there is exactly one member Aδ of the
family with sup(Aδ) = δ, while in a generalized ladder system there may be even an uncountable amount of members
for which their supremum is δ. The set of all generalized ladder systems in ω1 is easily seen to be inductive respect to
set-inclusion, so we may speak of maximal generalized ladder systems.

Lemma 2. A maximal generalized ladder system is a mad family.

Proof. Let A be a generalized ladder system which is maximal respect to set-inclusion. Since, from its definition, A is
an almost disjoint family in ω1, we only need showing its maximality. For this, again reasoning by contradiction, let B
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be an almost disjoint family in ω1 such that B ) A. Then, there is B ∈ B \ A. Since B is an infinite set, we may find a
strictly increasing sequence {b j : j ≥ 1} ⊆ B. Hence, the set B0 := {b j : j ≥ 1} satisfies that B(1)

0 = {sup(B0)} and so
the collection A0 := A ∪ {B0} is a generalized ladder system in ω1. But B0 < A contradicts the assumption that A is a
maximal generalized ladder system in ω1. 2

3. About Monolithic Mrówka Compacta

A compact K is said to be monolithic whenever each separable subset is second countable, by Uryshon’s metrization
theorem, this equals to say that each separable subset must be metrizable. The notion of monolithic space is due to
Arkhangel’skii, (Arkhangel’skii, A. V., 1992). Translated to scattered compacta, this means that in order to be monolithic
every countable subset must have countable closure. One of the best known classes of this type of spaces is the one formed
by Corson compacta.

If X is a Banach space such that it has the CS CP, it is not hard to see, ( Ferrer, J. et al.,(2013), that the dual unit ball BX∗ is
monolithic respect to the weak-star topology. Consequently, if C(K) has the CS CP, since being monolithic is hereditary,
it follows that K is monolithic. As we recalled in (Ferrer, J., 2015), under CH, a compact L was constructed in (Argyros,
S. et al., 1988) such that it is Corson, hence monolithic, but C(L) does not have the CS CP, thus proving that K being
monolithic is in general not sufficient in order to have that the function space C(K) enjoys the CS CP.

The next definition introduces a class of scattered compacta, that we prove strictly contains the monolithic scattered ones,
which will later give us a necessary condition for C(KA) to have the S CP.

Definition 1. If K is a scattered compact, we say that it is almost monolithic whenever the interior of the closure of each
countable subset is countable.

Clearly, every monolithic space is almost monolithic, while we see in the next example that the converse is not true, even
for Mrówka compacta. We introduce some more notation first, if A is an almost disjoint family of countably infinite
subsets of the infinite set S , given a countably infinite subset N of S , we define the following subfamily ofA

AN := {A ∈ A : A ⊂∗ N}.

It is easy to prove that
N ∪ AN ⊆ int(N) ⊆ N ∪ AN ∪ {∞}. (1)

Example. Let
S := [0,w1[\[0,w1[(1),

i.e., S is the set of non-limit countable ordinals. For each α ∈ [w,w1[(1), let Mα := {aα, j : j ≥ 1} be such that

∀ j, aα, j ∈ [w,w1[\[w,w1[(1), aα, j < aα, j+1, sup
j

aα, j = α.

Let N := {Nα : α ∈ [w,w1[(1)} be an uncountable almost disjoint family of countably infinite subsets of [0,w[. Setting,
for each α ∈ [w,w1[(1),

Aα := Nα ∪ Mα

we obtain thatA := {Aα : α ∈ [w,w1[(1)} is an almost disjoint family in S . Let KA be the associated Mrówka compact. It
is easy to see that in order to show that KA is almost monolithic it suffices to prove that, for each countably infinite subset
L ⊆ S , the familyAL is countable:

Setting L0 := L∩ [0,w[ and L1 := L∩ [w,w1[\[w,w1[(1), we have that L = L0 ∪ L1. Let γ := sup(L) < w1. If α ∈ [w,w1[(1)

is such that Aα ∈ AL, then Aα \ L is finite and hence

Aα ∩ L = (Aα ∩ L0) ∪ (Aα ∩ L1) = (Nα ∩ L0) ∪ (Mα ∩ L1)

is a cofinite subset of Aα, and so Mα ∩ L1 is an infinite set. Thus, there is an infinite sequence (aα, jh )h contained in L1.
Hence γ ≥ suph aα, jh = α, i.e.,AL is contained in the family {Aα : α ∈ [w,w1[(1)∩[0, γ]} which is clearly countable. Thus,
after (1), this shows that int(L) is countable. We have thus shown that KA is almost monolithic.

To see that KA is not monolithic, just notice that the closure of the countable set [0,w[ contains the family A which is is
uncountable.

Let A be a generalized ladder system in ω1. We say that it has countable type whenever, for each limit ordinal δ < ω1,
the collection

Aδ := { A ∈ A : A(1) = {δ} }
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is a countable one. The following result characterizes the generalized ladder systems whose associated Mrówka compact
is monolithic. Notice that the Mrówka compact of the former example is not a generalized ladder system, since, for each
α ∈ [w,w1[(1), A(1)

α = {ω, α}.
Proposition 1. Let A be a generalized ladder system in ω1 and KA its associated Mrówka compact. Then the following
assertions are equivalent

(i) KA is almost monolithic.

(ii) KA is monolithic.

(iii) A has countable type.

Proof. If KA is almost monolithic, to see that it is monolithic it suffices to show that, for any countable ordinal α, the
closure of [0, α[ in KA is countable. But, as we saw before, this reduces to see that the collectionA[0,α[ is a countable one.
Thus, if A ∈ A[0,α[, since A ∩ [0, α[ is infinite, we have that sup(A) = sup(A ∩ [0, α[) ≤ α. Hence, A ⊆ [0, α], that is, with
the notation formerly introduced, A ∈ A[0,α]. We have shown that A[0,α[ ⊆ A[0,α]; since A[0,α] is contained in int([0, α]),
which is countable by hypothesis, we have thatA[0,α] is countable and it follows thatA[0,α[ is countable too. This proves
(i)⇒ (ii).

To show that (ii) ⇒ (iii), if KA is monolithic, then, for each limit ordinal δ < ω1, since [0, δ[ is countable, [0, δ[ must be
countable. But, using the notation formerly introduced and noticing that

[0, δ[ ∪ A[0,δ[ ⊆ [0, δ[ ⊆ [0, δ[ ∪ A[0,δ[ ∪ {∞}

we have that the collection A[0,δ[ is countable. Since it is clear that this collection contains Aδ we have that Aδ is also
countable. It then follows thatA has countable type.

Finally, we see that (iii) ⇒ (i). In order to show that KA is almost monolithic it suffices to prove that, for each ordinal
δ < ω1, the interior of the closure of [0, δ[ in KA is countable. But, as indicated above, this reduces to see that the
collectionA[0,δ[ is countable. Now, A ∈ A[0,δ[ implies that A ⊂∗ [0, δ[, hence sup(A) ≤ δ, which gives us that

A[0,δ[ ⊆ { A ∈ A : sup(A) ≤ δ } = { A ∈ A : A(1) = {sup(A)} ⊆ [0, δ] } =
∪
α≤δ
Aα.

Since this last set is a countable union of countable collections, it follows that it is also countable and so isA[0,δ[. 2

4. A Necessary Condition for the Separable Complementation Property

Again for the sake of completeness, let us remember that a Banach space E is said to have the separable complementation
property whenever each closed separable subspace is contained in a separable complemented subspace. After Sobcyk’s
theorem, one of the straightforward consequences of this property is that isomorphic copies of c0 are always complemented
in Banach spaces with the S CP, being this one of the main features in the study of this property.

Also seeking self-completeness, let us just say that a Banach space E is said to possess the controlled separable comple-
mentation property if, for every two separable subspaces U and V of E and E∗, respectively, there is a bounded projection
P on E such that

(i) P(E) is separable,

(ii) U ⊆ P(E),

(iii) V ⊆ P∗(E∗).

Needless saying, the CS CP clearly implies having the S CP, while the converse is not true: To see this, as stated in
(Banakh, T. et al., 2004), simply consider the space ℓ1(ω1); as it happens with every space with an unconditional basis,
ℓ1(ω1) has the S CP, but, since it is not separable and its dual ℓ1(ω1)∗ = ℓ∞(ω1) is weak∗-separable, it follows that ℓ1(ω1)
does not have the CS CP. Also, it is interesting to remark, see (González, A. & Montesinos, V., 2009), that all weakly
Lindelöf determined Banach spaces have the CS CP, in particular the weakly compactly generated ones. We say that
the Mrówka compact KA associated to the almost disjoint family A of countably infinite subsets of the set S is strictly
separable whenever S is countable andA is uncountable.

Proposition 2. If E is a Banach space such that it has the S CP, then E contains no isomorphic copies of C(KA), where
KA is a strictly separable Mrówka compact.

Proof. Seeking a contradiction, assume that E has the S CP and let F be a closed linear subspace of E such that there
is a topological isomorphism T : C(KA) → F, with KA a strictly separable Mrówka compact. Then, KA is the Mrówka
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compact associated to the uncountable almost disjoint familyA formed by countably infinite subsets of the countable set
S . We consider the subspaces

U := span{1s : s ∈ S }; F0 := T (U).

Since U is isomorphic to c0, it is plain that F0 is also isomorphic to c0.

Making use of Sobcyk’s theorem, there is a closed subspace G such that E = F0 ⊕G. Thus, F = F0 ⊕ (G ∩ F). If P is the
projection from F onto F0 along G ∩ F, defining Q := T−1PT , we obtain a bounded linear projection on C(KA) such that
Q(C(KA)) = U. But

U = CA∪{∞}(KA)

and so
C(KA) ≃ U × C(KA)/U ≃ U × C(A∪ {∞}) ≃ c0 × c0(A).

This implies that C(KA) would have to be weakly compactly generated, hence it would have the CS CP. A contradiction
since KA is not monolithic. 2

In what follows, X will be a Hausdorff locally compact scattered space which is first countable. We give next a couple of
definitions in order to achieve a more general necessary condition for C0(X), the space of the continuous functions in X
which vanish at infinity, to have the S CP. First, notice after (Ferrer, J., 2015) that each point x in X admits a countable
clopen neighborhood.

Definition 2. Given a countably infinite subset A ⊆ X and a point x ∈ X, we say that A converges to x, which we symbolize
as A→ x, whenever, if U is a neighborhood of x, then U ∩ A is a cofinite subset of A.

Let us simply observe that, for a countably infinite set A, A→ x and A→ y imply that x = y.

Definition 3. A point x ∈ X is said to have cofinite type whenever there is a countably infinite clopen neighborhood V of
x such that the sets of the form {x} ∪ A, where A is a cofinite subset of V, are basic neighborhoods of x.

Proposition 3. If C0(X) has the S CP then, for each countably infinite open subset N of X, either int(cl(N)) is countable,
or int(cl(N)) \ N contains a point such that it does not have cofinite type.

Proof. Arguing by contradiction, let us assume that there is a countably infinite open subset N of X such that int(cl(N))
is not countable with all points in int(cl(N)) \ N having cofinite type. Let us write

int(cl(N)) \ N = { xi : i ∈ I},

where I is an uncountable set. For each i ∈ I, since xi has cofinite type, let Vi be the countably infinite clopen neighborhood
of xi, which we may assume that is contained in int(cl(N)), such that each neighborhood of xi contains a set of the form
{xi} ∪A, with A being a cofinite subset of Vi. Clearly, Vi → xi, hence, if i, j are distinct elements of I, then Vi ∩V j must be
a finite set. Besides, Vi \N = {xi}, otherwise, assuming there is x ∈ Vi \N \ {xi}, then x ∈ int(cl(N))\N implies that there is
j ∈ I, j , i, such that x = x j; but this is a contradiction, since then x j ∈ Vi would imply that Vi, being a neighborhood of x j

would contain a cofinite subset of V j. Thus, for each i ∈ I, setting Ai := Vi ∩N, we have that Vi = {xi} ∪Ai. Consequently,
we have that the collectionA := {Ai : i ∈ I} is an uncountable almost disjoint family of countably infinite subsets of the
countable set N.

Setting KA := N ∪ A ∪ {∞} to be the associated Mrówka compact, it is clear that KA is a strictly separable Mrówka
compact. We now define the map ψ : X → KA such that, for x ∈ X, we set

ψ(x) :=


x, if x ∈ N,
Ai, if x = xi, i ∈ I,
∞, elsewhere.

To see that ψ is continuous, given x ∈ X, let W be a neighborhood of ψ(x) in KA. Then

(a) If x ∈ N, since N is open and ψ(x) = x, the set U := W ∩ N is a neighborhood of x in X and clearly ψ(U) = U ⊆ W.

(b) If x = xi, for some i ∈ I, then ψ(x) = ψ(xi) = Ai. Thus, W must contain a set of the form {Ai}∪B, where B is a cofinite
subset of Ai. Let U := {xi} ∪ B. Then, since B is cofinite in Ai = Vi \ {xi}, it follows that U is a neighborhood of xi in X.
Besides, ψ(U) = {Ai} ∪ B ⊆ W.

(c) If x < N ∪ {xi : i ∈ I}, then ψ(x) = ∞. Hence, W contains a set of the form KA \ F \ Ai1 \ ... \ Ain \ {Ai1 , ..., Ain }, where
F is a finite subset of N and Ai1 , ..., Ain are inA. Taking

U := X \ F \ Vi1 \ ... \ Vin ,
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we have that U is an open set which contains x, i.e., a neighborhood of x, for which ψ(U) ⊆ KA \ F \ Ai1 \ ... \ Ain \
{Ai1 , ..., Ain } ⊆ W.

Being ψ clearly onto, we have that the space C(KA) is isometric to a subspace of C0(X). Now, since KA is a strictly
separable Mrówka compact, after Proposition 2, we conclude that C0(X) cannot have the S CP. 2

Noticing that in a Mrówka compact KA each point in KA \ {∞} has cofinite type and that C0(KA \ {∞}) is isomorphic to
C∞(KA), the next result obtains.

Corollary 1. If C(KA) has the S CP, then KA is almost monolithic.

To see that the converse of the above corollary does not hold, we consider the Mrówka compact constructed in the
example given before: KA = S ∪ A ∪ {∞}, with S = [0,w[ ∪ ([w,w1[\[w,w1[(1)) and A := {Aα : α ∈ [w,w1[(1)}, where
Aα := Nα ∪ Mα, α ∈ [w,w1[(1), being N = {Nα : α ∈ [w,w1[(1)} a mad family in [0, ω[ and {Mα : α ∈ [w,w1[(1)} a
ladder system in [w,w1[\[w,w1[(1).

We show that C(KA) does not have the S CP. For the sake of commodity, let E := C(KA) and we consider the closed
linear subspace F := span{1n : n < w}. If E has the S CP, then, using Sobcyk’s theorem, F is complemented in E. But,
since F = { f ∈ E : f|([w,w1[\[w,w1[(1))∪A∪{∞} = 0}, we have

E ≃ F × E/F ≃ F × C(([w,w1[\[w,w1[(1)) ∪A ∪ {∞}) ≃ c0 × C(KA0 ),

where KA0 is the Mrówka compact associated to S 0 := [w,w1[\[w,w1[(1) and A0 := {Aα ∩ S 0 : α ∈ [w,w1[(1)} = {Mα :
α ∈ [w,w1[(1)}. We know that C(KA0 ) has the CS CP (given that KA0 is really a ladder system in S 0, and we know that
ladder systems are always monolithic), hence we have that E = C(KA) would enjoy the CS CP, a contradiction since the
space KA is not monolithic.

After Proposition 1 and the previous corollary, the following result is straightforward.

Corollary 2. LetA be a generalized ladder system. The following assertions are equivalent:

(i) C(KA) has the S CP.

(ii) KA is almost monolithic.

(iii) A has countable type.

(iv) KA is monolithic.

(v) C(KA) has the CS CP

Since mad families produce Mrówka compacta which are never monolithic, from Lemma 2 and the previous corollary the
following result follows.

Corollary 3. LetA be a maximal generalized ladder system in ω1. Then C(KA) does not have the S CP.

Given that, if A is a mad family in ω1, its associated Mrówka compact KA is not monolithic, it is clear that C(KA) does
not have the CS CP. Nevertheless, concerning the S CP, although we have just seen in the previous corollary that there are
mad families for which their space of continuous functions on the associated Mrówka compact does not enjoy the S CP,
it is still unknown for us wether in general, for an arbitrary mad family, such a space may still have the S CP. Hence we
formulate the following related questions.

Question 1. IfA is any mad family in ω1, can C(KA) have the S CP ?

A positive answer to the next set-combinatoric question would yield a negative answer to the former one.

Question 2. IfA is any mad family in ω1, does there exist δ < ω1 for whichA[0,δ[ is uncountable ?
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