Mixed and Hybrid Finite Element Methods for Convection-Diffusion Problems and Their Relationships with Finite Volume: The Multi-Dimensional Case
- Michel Fortin
- Abdellatif Mounim
Abstract
We introduced in (Fortin & Serghini Mounim, 2005) a new method which allows us to extend the connection between the finite volume and dual mixed hybrid (DMH) methods to advection-diffusion problems in the one-dimensional case. In the present work we propose to extend the results of (Fortin & Serghini Mounim, 2005) to multidimensional hyperbolic and parabolic problems. The numerical approximation is achieved using the Raviart-Thomas (Raviart & Thomas, 1977) finite elements of lowest degree on triangular or rectangular partitions. We show the link with numerous finite volume schemes by use of appropriate numerical integrations. This will permit a better understanding of these finite volume schemes and the large number of DMH results available could carry out their analysis in a unified fashion. Furthermore, a stabilized method is proposed. We end with some discussion on possible extensions of our schemes.- Full Text: PDF
- DOI:10.5539/jmr.v9n1p68
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org