Geometry of the 3D Pythagoras' Theorem
- Luis Teia
Abstract
This paper explains step-by-step how to construct the 3D Pythagoras' theorem by geometric manipulation of the two dimensional version. In it is shown how $x+y=z$ (1D Pythagoras' theorem) transforms into $x^2+y^2=z^2$ (2D Pythagoras' theorem) via two steps: a 90-degree rotation, and a perpendicular extrusion. Similarly, the 2D Pythagoras' theorem transforms into 3D using the same steps. Octahedrons emerge naturally during this transformation process. Hence, each of the two dimensional elements has a direct three dimensional equivalent. Just like squares govern the 2D, octahedrons are the basic elements that govern the geometry of the 3D Pythagoras' theorem. As a conclusion, the geometry of the 3D Pythagoras' theorem is a natural evolution of the 1D and 2D. This interdimensional evolution begs the question -- Is there a bigger theorem at play that encompasses all three?- Full Text: PDF
- DOI:10.5539/jmr.v8n6p78
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org