The Fundamental Matrix of the Simple Random Walk with Mixed Barriers
- Yao Ayekple
- Derrick Asamoah Owusu
- Nana Kena Frempong
- Prince Fefemwole
Abstract
The simple random walk with mixed barriers at state $ 0 $ and state $ n $ defined on non-negative integers has transition matrix $ P $ with transition probabilities $ p_{ij} $. Matrix $ Q $ is obtained from matrix $ P $ when rows and columns at state $ 0 $ and state $ n $ are deleted . The fundamental matrix $ B $ is the inverse of the matrix $ A = I -Q $, where $ I $ is an identity matrix. The expected reflecting and absorbing time and reflecting and absorbing probabilities can be easily deduced once $ B $ is known. The fundamental matrix can thus be used to calculate the expected times and probabilities of NCD's.- Full Text: PDF
- DOI:10.5539/jmr.v8n6p128
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org