Approximation of a Second-order Elliptic Equation with Discontinuous and Highly Oscillating Coefficients by Finite Volume Methods
- Bienvenu Ondami
Abstract
In this paper we consider the numerical approximation of a class of second order elliptic boundary value problems with discontinuous and highly periodically oscillating coefficients. We apply both classical and modified finite volume methods for the approximate solution of this problem. Error estimates depending on $\varepsilon$ the parameter involved in the periodic homogenization are established. Numerical simulations for one-dimensional problem confirm the theorical results and also show that the modified scheme has a smaller constant of convergence than the classical scheme based on harmonic averaging for this class of equations.- Full Text: PDF
- DOI:10.5539/jmr.v8n6p34
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org