Computability Via The Lambda Calculus with Patterns
- Bodin Skulkiat
- Pimpen Vejjajiva
- Mark Hall
Abstract
We introduce a concept of \textbf{computability relative to a structure}, which specifies which functions on the universe of a first-order structure are computable, using the lambda calculus with patterns. In doing so, we add a new congruence, $\equiv_\mathfrak{A}$, called \textbf{congruence in a structure} to identify two syntactically different terms which represent the same element of the universe. We then show that, with the introduction of the new congruence, all the basic properties of the original lambda calculus with patterns still hold, including the Church-Rosser theorem.- Full Text: PDF
- DOI:10.5539/jmr.v2n4p157
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org