
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

Computability via the Lambda Calculus with Patterns

Bodin Skulkiat (Corresponding author)

Department of Mathematics, Faculty of Science

Chulalongkorn University, Bangkok, Thailand

Tel: 66-89-666-5804 E-mail: skulkiat.b@gmail.com

Pimpen Vejjajiva

Department of Mathematics, Faculty of Science

Chulalongkorn University, Bangkok, Thailand

E-mail: pimpen@abhisit.org

Mark E. Hall

Department of Mathematics and Computer Science, Hastings College

710 North Turner Ave, Hastings, NE 68901, USA

E-mail: mhall@hastings.edu

Abstract

We introduce a concept of computability relative to a structure, which specifies which functions on the universe of a
first-order structure are computable, using the lambda calculus with patterns. In doing so, we add a new congruence, ≡A,
called congruence in a structure to identify two syntactically different terms which represent the same element of the
universe. We then show that, with the introduction of the new congruence, all the basic properties of the original lambda
calculus with patterns still hold, including the Church-Rosser theorem.

Keywords: Computability, Lambda calculus, Lambda calculus with patterns, Congruence in a structure

1 Introduction

Most theories of computability are still limited to functions on the natural numbers, or generalizations thereof, e.g., Santos
1971, Blum, Shub, & Smale 1989, and Koepke 2005. However, there is no obvious reason why we cannot consider
computability in a very general setting, since computability is really just talking about whether we can produce an answer
by carrying out a finite number of precisely specified elementary processing steps. There are two basic questions that need
to be answered in order to do this: Which processing steps are elementary and how do we specify what steps to carry out
in order to perform a particular computation?

In this paper, we extend the concept of computability to functions on the domain of an arbitrary first-order structure
by taking a software-oriented approach: A function is computable if and only if we can write a “program” to compute
it, assuming that the computation of every function and relation in the structure is an elementary processing step. A
good, mathematically rigorous “programming language” is the lambda calculus. Since its introduction by Alonzo Church
in the 1930’s the lambda calculus has been studied in many aspects, notably regarding computability. A history of
lambda calculus related to computation theory can be found in Barendregt, 1997 and Cardone & Hindley, 2006. For an
introduction to the original lambda calculus see Hindley & Seldin, 1986, and for a more in-depth analysis see Barendregt,
2001. Since the lambda calculus only deals with symbols, without any assumptions about their meanings, it is a good tool
to help us extend the concept of computability to functions on the domain of an arbitrary first-order structure. To gain
greater expressive power, we will use a lambda calculus with patterns (Vejjajiva, 1997; Vejjajiva & Hall, 2002), which we
will briefly describe.

Assume there are given an infinite sequence of distinct symbols, called variables, and a set of symbols which are distinct
from the variables, called constants. The set of patterns is defined inductively as follows.

P1. Each variable and constant is a pattern.
P2. If P1 is a pattern which is not a variable, P2 is any pattern, and no variable occurs in both P1 and P2, then (P1P2)

is a pattern.

Then, the set of terms is defined inductively as follows.
T1. Each variable and constant is a term, called an atom.
T2. If M and N are any terms, (MN) is a term, called an application.
T3. If P is any pattern and Q is any term, (λP.Q) is a term, called a simple abstraction.

Published by Canadian Center of Science and Education 157

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

T4. If P is any pattern, Q is any term, and A is any abstraction, ((λP.Q) | A) is a term, called a compound abstraction.

An abstraction (λx.M) represents a function f : x �→ M. For example, (λx.x) represents an identity function. An
application (MN) represents applying a function represented by M to an argument represented by N. For example, if
we let 0 be a constant representing the natural number 0, ((λx.x)0) represents applying an identity function to 0, which
would result in 0. Avoiding complex technical details for the moment, we will use the symbol � to represent the idea of
“computing”. In this notation the preceding example can be written as ((λx.x)0) � 0. Here is a more involved example.
If we let S be a constant representing the successor function and ā be a constant representing any natural number a,
then ((λ0.0) | (λSx.x)) represents a predecessor function which maps 0 �→ 0, i.e.

(
((λ0.0) | (λSx.x))0

)
� 0, and maps

(a + 1) �→ a, i.e.
(
((λ0.0) | (λSx.x))Sā

)
� ā.

The general idea of how to extend the concept of computable functions to a first-order structure A for a language L is as
follows. For each element a ∈ |A|, let ā be a distinct symbol that does not occur in L. Define patterns and terms as in
the lambda calculus with patterns, using as constants all of the symbols in L together with all of the symbols ā. Then an
n-ary function g on |A| is computable relative to A if and only if there is a term G such that for all a1, . . . , an, a ∈ |A| we
have Gā1 . . . ān � ā, whenever g(a1, . . . , an) = a. Informally speaking, a function on |A| is computable relative to A if and
only if it can be represented by a term which captures all its functionalities. The interpretations of the elements of L in the
structure A are captured by adding a new congruence, ≡A, called congruence in a structure, to identify two syntactically
different terms that represent the same element of the domain |A|. For example, S0̄ ≡A 1̄, since they both represent 1 in N.
We then show that, with the introduction of the new congruence, all the basic properties of the original lambda calculus
with patterns still hold, particularly the Church-Rosser theorem.

2 λP-terms and Preliminary Lemmas

2.1 λP-terms

Definition 2.1.1 is based on the lambda calculus with patterns (Vejjajiva, 1997; Vejjajiva & Hall, 2002) with some adjust-
ments. Let L be a first-order language and A a structure for L. We use |A| to denote the domain of A.

Definition 2.1.1. For each element a in |A|, let ā be a distinct symbol that is not in L. We call all the nonlogical symbols
inL together with all of the symbols ā and two additional distinct symbols T and F constants. Assume also that an infinite
sequence of distinct symbols v1, v2, . . . , called variables, is given. Patterns and λP-terms are expressions constructed
using these symbols, as follows.

The set of patterns is the smallest set of expressions satisfying the following.
P1. All variables are patterns.
P2. The two constant symbols T and F, and all constant symbols in L are patterns.
P3. All function symbols f in L such that f A is one-to-one are patterns.
P4. If P is a pattern that is not a variable, Q is any pattern, and no variable occurs in both P and Q, then (PQ) is a

pattern.

The set of λP-terms is divided into sets of atoms, applications, and abstractions, and is defined to be the smallest set of
expressions satisfying the following.

T1. All variables and constants are λP-terms (these are the atoms).
T2. If P and Q are any λP-terms, then (PQ) is a λP-term (these are the applications).
T3. If P is any pattern and Q is any λP-term, then (λP.Q) is a λP-term (called a simple abstraction).
T4. If P is any pattern, Q is any λP-term, and A is any abstraction, then ((λP.Q) | A) is a λP-term (called a compound

abstraction).

An abstraction is either a simple abstraction or a compound abstraction.

Notation.
i. Parentheses will be omitted by using the convention of association to the left.

ii. λP.MN will abbreviate (λP.(MN)).
iii. We may simply write “terms” for “λP-terms”.
iv. Syntactic identity of terms will be denoted by ≡.
v. The set of free variables of a term M will be denoted by FV(M).

vi. If x = x1, . . . , xk is a sequence of distinct variables, N = N1, . . . ,Nk is a sequence of terms, and M is a term,
then the result of simultaneously substituting N1, . . . ,Nk for all free occurrences of x1, . . . , xk, respectively, in M

(subject to avoiding clashes of variables) is denoted by [N/x]M.
vii. We will say that two terms are of the same form whenever they are both atoms, both applications, both simple

abstractions, or both compound abstractions.

The definitions of bound and free occurrences of a variable, simultaneous substitution, and a change of bound variable

(α-step) are analogous to those in the original lambda calculus.

158 ISSN 1916-9795 E-ISSN 1916-9809

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

2.2 Preliminary Lemmas from Previous Work

The following lemmas and notes are from (Vejjajiva, 1997).

Lemma 2.2.1. Let x = x1, . . . , xk, k ≥ 1, be distinct variables, M, N = N1, . . . ,Nk be terms, and λP.Q be a simple

abstraction.

a. If {x1, . . . , xk} ∩ FV(M) = {xi1 , . . . , xim }, then [N1/x1, . . . ,Nk/xk]M ≡ [Ni1/xi1 , . . . ,Nim/xim]M.

b. If FV(P) ∩ FV(x1 . . . xkN1 . . .Nk) = ∅, then [N/x](λP.Q) ≡ λP.[N/x]Q.

Lemma 2.2.2. Let M and N be terms such that M ≡α N.

a. If M ≡ M1M2, then N ≡ N1N2 for some terms N1 and N2, where Mi ≡α Ni, i = 1, 2;

b. if M ≡ λP.Q, and no variable in P has been changed, then N ≡ λP.Q′ for some term Q′ such that Q ≡α Q′;
c. if M ≡ (λP.Q | A) then N ≡ (λP′.Q′ | A′) for some abstractions λP′.Q′ and A′ where λP.Q ≡α λP′.Q′ and A ≡α A′.

Lemma 2.2.3.
a. For any terms M and N, if M ≡α N, then FV(M) = FV(N).
b. For any term M, any variables x1, . . . , xn, n ≥ 1, there exists a term M′ such that M ≡α M′ and none of x1, . . . , xn is

bound in M′.

Lemma 2.2.4. Let x = x1, . . . , xk, k ≥ 1 be distinct variables, and N = N1, . . . ,Nk, N′ = N′
1, . . . ,N

′
k

be terms such that

Ni ≡α N′
i for all 1 ≤ i ≤ k. For any terms M and M′, if M ≡α M′, then [N/x]M ≡α [N′/x]M′.

3 Computability Relative to a Structure

3.1 Congruence in a Structure

Definition 3.1.1. Single-Step Congruence in A, denoted by ≡1A, is defined as follows.
C1. For any constant symbol c in L and any a in |A|, c ≡1A ā if cA = a.
C2. For any n-ary function symbol f in L and any a, a1, . . . , an in |A|, f ā1 . . . ān ≡1A ā if f A(a1, . . . , an) = a.

C3. For any n-ary relation symbol r in L and any a1, . . . , an in |A|, rā1 . . . ān ≡1A

⎧⎪⎪⎨⎪⎪⎩T if (a1, . . . , an) ∈ rA,

F otherwise.
C4. For any terms M and N, M ≡1A N if N ≡1A M by C1, C2, or C3.
C5. Let P be any pattern; A be any abstraction; and M, N, and Q be any terms such that M ≡1A N. Then

i. MQ ≡1A NQ.

ii. QM ≡1A QN.

iii. λP.M ≡1A λP.N.

iv. (λP.M | A) ≡1A (λP.N | A).

v. (λP.Q | M) ≡1A (λP.Q | N) if M and N are abstractions.

For any terms M and N, we write M ≡0
1A

N if M ≡1A N by C1, C2, C3, or C4.

If L is an occurrence of a term M in a term Q and M ≡0
1A

N, the act of replacing L by N is called a 1A-conversion in Q.

Note 3.1.2.
a. If M ≡1A N where M and N are terms which are not atomic, then M (≡0

1A
N.

b. If M ≡1A N and FV(M) ∪ FV(N) � ∅, then M (≡0
1A

N.
c. If M ≡1A N but M (≡0

1A
N, then M and N are of the same form.

d. For any variable x and any term M, x (≡1A M.

Definition 3.1.3. For any terms M and N, we say M is congruent in A to N, denoted by M ≡A N, if there exists a
sequence of terms M ≡ M1, . . . ,Mn ≡ N, n ≥ 1, such that for each 1 ≤ i < n, Mi ≡1A Mi+1.

If L is an occurrence of a term M in a term Q and M ≡A N, the act of replacing L with N is called an A-conversion in Q.

Note 3.1.4.
a. If M ≡A N and M contains an abstraction then M and N are of the same form.
b. If M1M2 ≡A N1N2 with no ≡0

1A
in the sequence of congruences, then M1 ≡A N1 and M2 ≡A N2.

Lemma 3.1.5. The relation ≡A is an equivalence relation.

Proof. It is clear that ≡A is reflexive and transitive. By induction, it can be shown that ≡A is symmetric. �

Lemma 3.1.6. For any a, b in |A|, if ā ≡A b̄ then a = b.

Proof. By inducting on the length of the sequence of congruences. �

Published by Canadian Center of Science and Education 159

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

Lemma 3.1.7. Let P be a pattern with FV(P) = {x1, . . . , xk}, k ≥ 1, and U = U1, . . . ,Uk,V = V1, . . . ,Vk be terms. Let

x = x1, . . . , xk. If [U/x]P ≡A [V/x]P, then Ui ≡A Vi for all 1 ≤ i ≤ k.

Proof. Assume [U/x]P ≡A [V/x]P. Induct on P. The proof for the case P ≡ x1 is easy. Assume P ≡ P1P2.
Let [U/x]P ≡A [V/x]P by a sequence of terms [U/x]P ≡ K1, . . . ,Ks ≡ [V/x]P, s ≥ 1.

Case 1. Ki (≡0
1A

Ki+1 for all 1 ≤ i < s.
By Note 3.1.4(b) [U/x]P1 ≡A [V/x]P1 and [U/x]P2 ≡A [V/x]P2, so by induction, Ui ≡A Vi for all 1 ≤ i ≤ k.

Case 2. Ki ≡0
1A

Ki+1 for some 1 ≤ i < s.
Let n be the first such i. Then Kn ≡ f ā1 . . . āq and Kn+1 ≡ ā for some function symbol f , and some
a, a1, . . . , aq ∈ |A|, q ≥ 1. Since Kn+1 ≡A Ks ≡ [V/x]P, by Note 3.1.2 Kj ≡0

1A
Kj+1 for some n + 1 ≤ j < s.

Let m be the most such j. Then we have Km ≡ b̄ and Km+1 ≡ gb̄1 . . . b̄r for some function symbol g, and
some b, b1, . . . , br ∈ |A|, r ≥ 1. Since a pattern cannot begin with a variable and [U/x]P ≡A Kn ≡ f ā1 . . . āq

with Kj (≡0
1A

Kj+1 for all 1 ≤ j < n, by induction on q, the pattern P must begin with f . Similarly for
gb̄1 . . . b̄r ≡ Km+1 ≡A [V/x]P, the pattern P must begin with g. Therefore f ≡ g. By Lemma 3.1.6 and the
fact that f A is one-to-one, we have q = r and a j = b j for all 1 ≤ j ≤ q. Then [U/x]P ≡A Kn ≡ f ā1 . . . āq

≡ gb̄1 . . . b̄r ≡ Km+1 ≡A Ks ≡ [V/x]P, with Kj (≡0
1A

Kj+1 for all 1 ≤ j < n and m + 1 ≤ j < s. Hence by Case 1
Ui ≡A Vi for all 1 ≤ i ≤ k. �

Lemma 3.1.8. Let Q and Q′ be terms, x and y be variables. If y � FV(Q) and [y/x]Q ≡1A Q′, then Q ≡1A Q′′ for some

term Q′′ such that Q′′ ≡α [x/y]Q′.

Proof. Assume y � FV(Q) and [y/x]Q ≡1A Q′. The proof for the case x � FV(Q) is easy, so assume x ∈ FV(Q)
and induct on Q. We will prove only the case in which Q is a simple abstraction as the proofs of the other cases are
straightforward. Assume Q ≡ λP.Q1 for some pattern P and some term Q1. The proof for the case y � FV(P) is easy, so
assume y ∈ FV(P). Then [y/x]Q ≡ λ[z/y]P.[y/x][z/y]Q1 where z is the first variable not in FV(PQ1). So Q′ ≡ λ[z/y]P.Q′

1
for some term Q′

1 where [y/x][z/y]Q1 ≡1A Q′
1. By induction, we have [z/y]Q1 ≡1A Q′′

1 ≡α [x/y]Q′
1 for some term Q′′

1 , and
Q1 ≡1A Q′′′

1 ≡α [y/z]Q′′
1 for some term Q′′′

1 . Note that since {x, y} ∩ FV([z/y]P) = ∅, [x/y]λ[z/y]P.Q′
1 ≡ λ[z/y]P.[x/y]Q′

1.
Choose Q′′ ≡ λP.Q′′′

1 . Then Q ≡ λP.Q1 ≡1A λP.Q
′′′
1 ≡α λP.[y/z]Q′′

1 ≡α λP.[y/z][x/y]Q′
1 ≡α λ[z/y]P.[z/y][y/z][x/y]Q′

1 ≡α
λ[z/y]P.[x/y]Q′

1 ≡ [x/y]λ[z/y]P.Q′
1 ≡ [x/y]Q′. �

Lemma 3.1.9. Let M,N, and N′ be terms. If M ≡1α N ≡1A N′, then M ≡1A M′ ≡α N′ for some term M′.

Proof. By induction on M. �

Corollary 3.1.10. Let M,N, and N′ be terms. If M ≡α N ≡A N′ then M ≡A M′ ≡α N′ for some term M′.

Proof. This follows directly from Lemma 3.1.9. �

Lemma 3.1.11. Let x = x1, . . . , xk, k ≥ 1, be distinct variables and M,N, and U = U1, . . . ,Uk be terms. If M ≡1A N then

[U/x]M ≡1A N′ for some term N′ such that N′ ≡α [U/x]N.

Proof. Assume M ≡1A N. The proof for the case {x} ∩ FV(M) = ∅ is easy. Assume {x} ⊆ FV(M) and induct on M. We
will prove only the case in which M is a simple abstraction as the proofs of the other cases are straightforward. Assume
M ≡ λP.M1 for some pattern P and some term M1. Then N ≡ λP.N1 for some term N1 such that M1 ≡1A N1. By
induction [U/x]M1 ≡1A N′

1 ≡α [U/x]N1 for some term N′
1. Let m =

∣∣∣FV(P) ∩ FV(U)
∣∣∣ and induct on m. If m = 0,

then [U/x]M ≡ λP.[U/x]M1 ≡1A λP.N
′
1 ≡α λP.[U/x]N1 ≡ [U/x]N. Now assume m > 0. Let y be the first variable in

FV(P) ∩ FV(U) and z be the first variable which is not in FV(PM1U). Note that z is also the first variable which is not
in FV(PN1U) since M1 ≡1A N1, so FV(M1) ≡ FV(N1). By the main induction hypothesis, [z/y]M1 ≡1A N′′

1 ≡α [z/y]N1
for some term N′′

1 . Then by the subsidiary induction hypothesis, [U/x]λ[z/y]P.[z/y]M1 ≡1A N′ ≡α [U/x]λ[z/y]P.N′′
1 for

some term N′. Hence [U/x]M ≡ [U/x]λ[z/y]P.[z/y]M1 ≡1A N′ ≡α [U/x]λ[z/y]P.[z/y]N1 ≡ [U/x]λP.N1 ≡ [U/x]N. �

Corollary 3.1.12. Let x = x1, . . . , xk, k ≥ 1, be distinct variables and M,N, and U = U1, . . . ,Uk be terms. If M ≡A N

then [U/x]M ≡A N′ for some term N′ such that N′ ≡α [U/x]N.

Proof. This follows from Lemma 3.1.11 and Corollary 3.1.10. �

3.2 Contractions and Reductions

The definitions of β-contraction, γ-contraction, and δ-contraction; and potential redex and contractible redex are analo-
gous to those in the original lambda calculus with patterns. We extend the definitions of reductions by adding the new
congruence ‘≡A’ as follows.

Definition 3.2.1. For any terms M and M′, we say M β-reduces to M′, denoted by M �β M′, if there exists a sequence of
terms M ≡ M1, . . . ,Mn ≡ M′, n ≥ 1, such that for each 1 ≤ i < n, Mi �1β Mi+1, Mi ≡α Mi+1, or Mi ≡A Mi+1.

Definition 3.2.2. For any terms M and M′, we say M βγ-reduces to M′, denoted by M �βγ M′, if there exists a sequence
of terms M ≡ M1, . . . ,Mn ≡ M′, n ≥ 1, such that for each 1 ≤ i < n, Mi �1βMi+1,Mi �1γMi+1, Mi ≡α Mi+1, or Mi ≡A Mi+1.

160 ISSN 1916-9795 E-ISSN 1916-9809

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

Definition 3.2.3. For any terms M and M′, we say M βδ-reduces to M′, denoted by M �βδM′, if there exists a sequence of
terms M ≡ M1, . . . ,Mn ≡ M′, n ≥ 1, such that for each 1 ≤ i < n, Mi �1β Mi+1, Mi �1δ Mi+1, Mi ≡α Mi+1, or Mi ≡A Mi+1.
We call such a sequence of terms a βδ-reduction.

Remark. Unless explicitly specified otherwise, a “reduction” means a“βδ-reduction”.

Notation. The expression M �1β1δ N will mean “M �1β N or M �1δ N”.

Many of the following lemmas are also analogous to those of the original lambda calculus with patterns. Most of the
lemmas are unaffected by the new congruence ≡A and for these proofs will not be given. Only a few need some small
changes in the statement or proof; for these we will sketch the proof for those parts that differ.

Corollary 3.2.4. For any term M, if M �βδ N, then N is a term and

a. if M ≡ M1M2 and M �βδ N by a sequence of terms M ≡ K1, . . . ,Kn ≡ N, n ≥ 1, such that for each 1 ≤ i < n, Ki

is not the potential redex which is contracted and Ki (≡0
1A

Ki+1 then N ≡ N1N2 for some terms N1 and N2 such that

Mi �βδ Ni, i = 1, 2;

b. if M ≡ λP.Q, and no variable in P has been changed when M �βδ N then N ≡ λP.Q′ for some term Q′ such that

Q �βδ Q′;
c. if M ≡ (λP.Q | A) then N ≡ (λP′.Q′ | A′) for some abstractions λP′.Q′ and A′ such that λP.Q�βδ λP

′.Q′ and A�βδA′.

Lemma 3.2.5. Let x = x1, . . . , xk, k ≥ 1, be distinct variables, N = N1, . . . ,Nk be terms, and P be a pattern. If [N/x]P is

a potential redex, then P ≡ xt for some 1 ≤ t ≤ k.

Lemma 3.2.6. Let x = x1, . . . , xk, k ≥ 1, be distinct variables, N = N1, . . . ,Nk be terms, P be a pattern, and S be a

potential redex. If S is in [N/x]P, then S is in Nt for some 1 ≤ t ≤ k.

Proof. Assume S is in [N/x]P. We will induct on P. Note that since a pattern cannot contain an abstraction, {x}∩FV(P) �
∅, otherwise S is in [N/x]P ≡ P, a contradiction. In fact, by Corollary 2.2.1(a) we may assume that {x} ⊆ FV(P).

Case 1. P ≡ x1.
Then [N/x]P ≡ N1. So S is in N1 and we are finished.

Case 2. P ≡ P1P2.
Then [N/x]P ≡ [N/x]P1[N/x]P2. Since P is not a variable, by Lemma 3.2.5, any substitution of P is not a
potential redex. Hence S is either in [N/x]P1 or [N/x]P2. In either case, by induction S is in Nt for some
1 ≤ t ≤ k. �

Lemma 3.2.7. Let R ≡ (λP.Q)N be a β-redex, x = x1, . . . , xk, k ≥ 1, be distinct variables, and S ,U = U1, . . . ,Uk be terms.

If R �1β S , then [U/x]R �β [U/x]S . To be precise, if R �1β S , then [U/x]R �1β S ∗ for some term S ∗, where S ∗ ≡α [U/x]S .

Lemma 3.2.8. Let R ≡ (λP.Q | A)N be a δ-redex, x = x1, . . . , xk, k ≥ 1, be distinct variables, and U = U1, . . . ,Uk be

terms. If R �1δ S , then [U/x]R �1δ [U/x]S .

Lemma 3.2.9. Let P be a pattern with FV(P) = {x1, . . . , xk}, k ≥ 1, and N,U = U1, . . . ,Uk be terms. Let x = x1, . . . , xk.

If [U/x]P �βδ N, then N ≡A [V/x]P for some terms V = V1, . . . ,Vk such that Ui �βδ Vi for all 1 ≤ i ≤ k.

Proof. Assume [U/x]P �βδ N. Induct on P. The proof for the case P ≡ x1 is easy. Assume P ≡ P1P2. Let [U/x]P �βδ N

by a sequence of terms [U/x]P ≡ K1, . . . ,Kn ≡ N, n ≥ 1.
Case 1. Ki (≡0

1A
Ki+1 for all 1 ≤ i < n.

Then N ≡ N1N2 for some terms N1 and N2, where [U/x]Pi �βδ Ni, i = 1, 2. Without loss of generality, assume
FV(P1) � ∅.

(1.1) FV(P2) = ∅.
Then FV(P1) = {x1, . . . , xk} and P2 ≡A N2. By induction N1 ≡A [V/x]P1 for some terms V = V1, . . . ,Vk,
where Ui �βδ Vi for all 1 ≤ i ≤ k. Hence N ≡A ([V/x]P1)P2 ≡ [V/x]P.

(1.2) FV(P2) = {x j1 , . . . , x jp
}.

Then FV(P1) = {xi1 , . . . , xim }, where {i1, . . . , im} ∪ { j1, . . . , jp} = {1, . . . , k} and {i1, . . . , im} ∩ { j1, . . . , jp} =
∅. By Corollary 2.2.1(a), [U/x]P1 ≡ [Ui1/xi1 , . . . ,Uim/xim]P1 and [U/x]P2 ≡ [U j1/x j1 , . . . ,U jp

/x jp
]P2.

By induction, N1 ≡A [Vi1/xi1 , . . . ,Vim/xim]P1 and N2 ≡A [Vj1/x j1 , . . . ,Vjp
/x jp

]P2 for some terms
Vi1 , . . . ,Vim , Vj1 , . . . ,Vjp

, where Ur �βδ Vr for all 1 ≤ r ≤ k. Let V = V1, . . . ,Vk. Hence N ≡ N1N2 ≡A

[Vi1/xi1 , . . . ,Vim/xim]P1[Vj1/x j1 , . . . ,Vjp
/x jp

]P2 ≡ [V/x]P1[V/x]P2 ≡ [V/x]P.

Case 2. Ki ≡0
1A

Ki+1 for some 1 ≤ i < n.
Let k be the first such i. Then [U/x]P �βδ Kk with Kj (≡0

1A
Kj+1 for all 1 ≤ j < k. By Case 1 we have

Kk ≡A [V/x]P for some terms V = V1, . . . ,Vk such that U j �βδ Vj for all 1 ≤ j ≤ k. Since Kk ≡0
1A

Kk+1, Kk

contains no abstraction, so N ≡A Kk ≡A [V/x]P. �

Lemma 3.2.10. Let A be an abstraction, and N be a term such that AN is a contractible redex.

Published by Canadian Center of Science and Education 161

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

a. For any term N′ such that N ≡α N′, AN′ is a contractible redex.

b. For any term N′ such that N �1β1δ N′, AN′ is a contractible redex.

Lemma 3.2.11. Let A be an abstraction, and N and N′ be terms such that N �βδ N′. If AN is a contractible redex, then

there exists a term N′′ such that N′ ≡A N′′ and AN′′ is a contractible redex.

Proof. Assume AN is contractible. Let N �βδ N′ by a sequence of terms N ≡ N1, . . . ,Nk ≡ N′, k ≥ 1. We will induct on
k. If k = 1 then N ≡ N1 ≡ N′, so AN′ is contractible. Now assume k > 1. Then by induction there exists a term N′

k−1 such
that Nk−1 ≡A N′

k−1 and AN′
k−1 is a contractible redex. We will prove only the case in which Nk−1 �1β1δ N′ as the proofs of

the other cases are straightforward. Assume Nk−1 �1β1δ N′. Then Nk−1 contains an abstraction. Since Nk−1 ≡A N′
k−1, by

Note 3.1.4(a), N′
k−1 also contains an abstraction.

Case 1. A ≡ λP.Q. for some pattern P and some term Q.
Assume FV(P) = {x1, . . . , xn} for some variables x = x1, . . . , xn. Since (λP.Q)N′

k−1 is contractible, [U/x]P ≡
N′

k−1 for some terms U = U1, . . . ,Un. Since [U/x]P ≡ N′
k−1 ≡A Nk−1 �1β1δ N′, by Lemma 3.2.9 N′ ≡A [V/x]P

for some terms V = V1, . . . ,Vn. Choose N′′ ≡ [V/x]P.
Case 2. A ≡ (λP.Q | B) for some pattern P, some term Q, and some abstraction B.

If ANk−1 is contractible, since Nk−1 �1β1δN′, by Lemma 3.2.10(b), AN′ is contractible and we are finished. Now
suppose (λP.Q | B)Nk−1 is not contractible. Then (λP.Q | B)N′

k−1 (�1δBN′
k−1, so (λP.Q)N′

k−1 is contractible, and
the proof can be finished much like in Case 1. �

Lemma 3.2.12. Let R be a contractible redex, and R′ and S be terms such that R ≡α R′. If R �1β S (respectively R �1δ S),

then R′ �1β S ′ (respectively R′ �1δ S ′) for some term S ′, where S ′ ≡α S .

3.3 Computability Relative to a Structure

Definition 3.3.1. Let g be an n-ary function on |A|. We say g is computable relative to A if and only if there is a term G,
using only variables and symbols in L together with T and F, such that for all a1, . . . , an, a ∈ |A|, we have

Gā1 . . . ān �βδ ā

whenever g(a1, . . . , an) = a.

Definition 3.3.2. Let r be an n-ary relation on |A|. We say r is computable relative to A if and only if there is a term R,
using only variables and symbols in L together with T and F, such that for all a1, . . . , an ∈ |A|, we have

Rā1 . . . ān �βδ T if (a1, . . . , an) ∈ r, and
Rā1 . . . ān �βδ F otherwise.

4 The Church-Rosser Theorem

4.1 Minimal Complete Developments

The definition for minimal complete development (MCD) is slightly modified from the original one to allow the new
congruence ≡A.

Definition 4.1.1. Let R and S be occurrences of contractible redexes in a term M. When R is contracted, let M change to
M′.

The contraction-residuals of S (with respect to R) are occurrences of potential redexes in M′, defined as follows.
Case 1. R and S are non-overlapping parts of M.

Then contracting R leaves S unchanged. This unchanged S in M′ is the contraction-residual of S .
Case 2. R ≡ S

Then contracting R is the same as contracting S . We say S has no contraction-residuals in M′.
Case 3. R is part of S and R � S .

Since S is a potential redex, S ≡ AN for some abstraction A, and some term N. So R is either in A or in N.
Then contracting R changes S to S ′, where S ′ ≡ A′N′ for some abstraction A′ and some term N′ such that
either A �1β1δ A′ and N ≡ N′ or A ≡ A′ and N �1β1δ N′. This S ′ is the contraction-residual of S .

Case 4. S is part of R and S � R.
There are cases and subcases as follows.

(4.1) R ≡ (λP.Q)N.

(4.1.1) FV(P) = ∅.
Since R is a β-redex, P ≡ N and R �1β Q. Since S is a potential redex in R, S is in Q. Since R �1β Q,
contracting R leaves S unchanged in M′; this is the contraction-residual of S.

162 ISSN 1916-9795 E-ISSN 1916-9809

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

(4.1.2) FV(P) = {x1, . . . , xk}, k ≥ 1.
Then [N/x]P ≡ N for some terms N = N1, . . . ,Nk and R �1β [N/x]Q.

(4.1.2.1) S is in Q.
Then S changes to S ′, where S ′ is either S or some substitution of S . This S ′ is the contraction-
residual of S .

(4.1.2.2) S is in N.
Then S is in [N/x]P. By Lemma 3.2.6, S is in Nt for some 1 ≤ t ≤ k. Hence there is an
occurrence of S in each Nt substituted for an occurrence of xt in Q. These are the contraction-
residuals of S . (Note that S may have many or no contraction-residuals.)

(4.2) R ≡ (λP.Q | A)N.

(4.2.1) R �1δ (λP.Q)N.
If S is in Q or N, then contracting R leaves S unchanged, and this is the contraction-residual of S in
M′. If S is in A, then S has no contraction-residuals in M′.

(4.2.2) R �1δ AN.
If S is in A or N, then this unchanged S in A or N is the contraction-residual of S in M′. If S is in
Q, then S has no contraction-residuals in M′.

Note 4.1.2.
a. Except in the Case 4.1.2.2, S has at most one contraction-residual.
b. Each contraction-residual is a contractible redex.

Definition 4.1.3. Let R be an occurrence of contractible redex in a term M. The 1A-conversion-residuals of R (with
respect to M) when M ≡1A M′ are occurrences of potential redexes in M′, defined inductively as follows. Note that since
M contains an abstraction, M (≡0

1A
M′, so M and M′ are of the same form.

Case 1. M ≡ R.
If M′ is a contractible redex then this M′ is the 1A-conversion-residual of R, otherwise R has no 1A-conversion-
residuals in M′.

Case 2. M � R.

(2.1) R is unchanged in M′.
This unchanged R is the 1A-conversion-residual of R.

(2.2) R is changed in M′.
(2.2.1) M ≡ M1M2 for some term M1 and M2.

Then R is in Mi for some i ∈ {1, 2}. The 1A-conversion-residual of R with respect to Mi is the
1A-conversion-residual of R with respect to M.

(2.2.2) M ≡ λP.N for some pattern P and some term N.
Then R is in N. The 1A-conversion-residual of R with respect to N is the 1A-conversion-residual of
R with respect to M.

(2.2.3) M ≡ (A1 | A2) for some abstractions A1 and A2.
Then R is in Ai for some i ∈ {1, 2}. The 1A-conversion-residual of R with respect to Ai is the
1A-conversion-residual of R with respect to M.

Note 4.1.4.
a. R has at most one 1A-conversion-residual.
b. Each 1A-conversion-residual is a contractible redex.

Remark. We may simply use “residual” to abbreviate either a “contraction-residual” or a “1A-conversion-residual”,
where there is no ambiguity.

Definition 4.1.5. If R = {Ri | 1 ≤ i ≤ n}, n ≥ 0, is a set of occurrences of potential redexes in a term M, then an Ri is
called minimal (with respect to R) if it properly contains no other Rj ∈ R.

Let RM = {Ri | 1 ≤ i ≤ n}, n ≥ 0, be a set of occurrences of contractible redexes in a term M. For any terms M∗ and M′
such that M∗ ≡A M, we say M′ is obtained from M∗ by a minimal complete development (MCD) of RM , denoted by
M∗ �mcd M′ (of RM), if M′ is obtained from M by the following process.

First contract any minimal Ri; without loss of generality let i = 1. By Definition 4.1.1, this leaves n − 1 contraction-
residuals, R′2,R

′
3, . . . ,R

′
n. Then make as many 1A-conversions as you like (possibly none), this leaves at most n − 1

1A-conversion-residuals among R′′2 ,R
′′
3 , . . . ,R

′′
n . Again, contract any minimal R′′t and make 1A-conversions. This leaves

at most n − 2 residuals. Repeat this process until no contraction-residuals are left. Then make as many 1A-conversions as
you like. Finally, make as many α-steps as you like.

Published by Canadian Center of Science and Education 163

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

Note 4.1.6. a. Each MCD is a βδ-reduction.
b. For any contractible redex L, if L �mcd M of RL, without α-steps, where L � RL, and M �1β1δ N, with M being the

potential redex contracted, then L �mcd N of RL ∪ {L}, without α-steps. In fact, for any term L′ such that L′ ≡A L,
L′ �mcd N of RL ∪ {L}, without α-steps.

Proposition 4.1.7. Let M,N and N′ be terms. If M �mcd N ≡A N′ then M �mcd N′.

Proof. This follows directly from Corollary 3.1.10. �

Lemma 4.1.8. Let P be a pattern with FV(P) = {x1, . . . , xk}, k ≥ 1, and N, U = U1, . . . ,Uk be terms. Let x = x1, . . . , xk.

If [U/x]P �mcd N, then N ≡A [V/x]P for some terms V = V1, . . . ,Vk such that Ui �mcd Vi for all 1 ≤ i ≤ k.

Proof. This can be proved in the same way as Lemma 3.2.9. �

Lemma 4.1.9. For any terms M,N, and M′, if M �mcd N and M ≡α M′, then M′ �mcd N.

Lemma 4.1.10. For any distinct variables x = x1, . . . , xk, k ≥ 1, and any terms M,N, U = U1, . . . ,Uk,V = V1, . . . ,Vk if

M �mcd N and Ui �mcd Vi for all 1 ≤ i ≤ k, then [U/x]M �mcd [V/x]N.

Proof. As in the original proof of these two lemmas (Vejjajiva, 1997, pp. 56–59), they are proved simultaneously by
induction on M, and additionally we may assume that the MCD M �mcd N has no α-steps and {x} ⊆ FV(M). The proof
remains unchanged except for the case where M ≡ M1M2, which is rewritten as follows. Let M �mcd N of R by a sequence
of terms M ≡ K1, . . . ,Kn ≡ N, n ≥ 1.

Case 1. Ki (≡0
1A

Ki+1 for all 1 ≤ i < n.

(1.1) M � R.
This can be proved in the same way as the case when M is a compound abstraction (See Case iii. of the
original proof (Vejjajiva, 1997, pp.58).

(1.2) M ∈ R.
Then M �mcd M0

1 M0
2 �1β1δ N0 ≡A N for some terms M0

1 , M0
2, and N0 such that M1 �mcd M0

1 and M2 �mcd M0
2 ,

both without α-steps, and M0
1 M0

2 is the potential redex contracted when M0
1 M0

2 �1β1δ N0.
Proof of 4.1.9.

Then M′ ≡ M′
1M′

2 for some terms M′
1 and M′

2 such that M′
i ≡α Mi, i = 1, 2. By induction,

M′
i �mcd M∗

i , without α-steps, for some terms M∗
i such that M∗

i ≡α M0
i
, i = 1, 2. Since M∗

1 M∗
2 ≡α

M0
1 M0

2 �1β1δ N0, by Lemma 3.2.12 M∗
1 M∗

2 �1β1δ M∗ ≡α N0 for some term M∗. Since M′ ≡
M′

1M′
2 �mcd M∗

1 M∗
2 �1β1δ M∗ ≡α N0 ≡A N, by Note 4.1.6(b) and Proposition 4.1.7 M′ �mcd N.

Proof of 4.1.10.
By induction [U/x]Mi �mcd M∗

i , without α-steps, for some M∗
i such that M∗

i ≡α [V/x]M0
i
, i =

1, 2. Since M0
1 M0

2 �1β1δ N0, by Lemmas 3.2.7 and 3.2.8 [V/x](M0
1 M0

2) �1β1δ N∗ ≡α [V/x]N0

for some term N∗. By Lemma 3.2.12 M∗
1 M∗

2 �1β1δ M∗ ≡α N∗ for some term M∗. Since N0 ≡A

N, by Proposition 3.1.12 [V/x]N0 ≡A N′ ≡α [V/x]N for some term N′. Since [U/x]M ≡
[U/x]M1[U/x]M2 �mcd M∗

1 M∗
2 �1β1δ M∗ ≡α N∗ ≡α [V/x]N0 ≡A N′ ≡α [V/x]N, by Note 4.1.6(b)

and Proposition 4.1.7, [U/x]M �mcd [V/x]N.
Case 2. Ki ≡0

1A
Ki+1 for some 1 ≤ i < n.

Let k be the first such i. Then M �mcd Kk with Kj (≡0
1A

Kj+1 for all 1 ≤ j < k. Since Kk ≡0
1A

Kk+1, Kk contains
no abstractions. Then, since Kk �mcd N, it must be that Kk ≡A N.

Proof of 4.1.9.
Since M ≡α M′, by Case 1, M′ �mcd Kk, then by Proposition 4.1.7, M′ �mcd N.

Proof of 4.1.10.
By Case 1, [U/x]M �mcd [V/x]Kk. Since Kk ≡A N, by Proposition 3.1.12 [V/x]Kk ≡A N′ ≡α [V/x]N
for some term N′, so by Proposition 4.1.7 [U/x]M �mcd [V/x]N. �

4.2 The Church-Rosser Theorem for βδ-Reduction

As is now standard, we first prove the Church-Rosser theorem for MCD’s, where most of the work is done, then use it to
prove the Church-Rosser theorem for βδ-reduction.

Theorem 4.2.1. (The Church-Rosser Theorem for MCD’s)
For any terms L,M, and N, if L �mcd M and L �mcd N, then there exists a term T such that M �mcd T and N �mcd T .

Proof. Let L,M, and N be terms such that L�mcd M and L�mcd N. Then M (respectively N) is obtained from L by the given
MCD of a set RM (respectively RN). By Lemma 4.1.9, it is sufficient to consider the case in which the given MCD’s
have no α-steps. Induct on L. We will prove only the case in which L is an application as the proofs of the other cases are
straightforward. Let L ≡ L1L2. The cases L � RM and L � RN can be proved using arguments similar to the one used in
the case L is a compound abstraction. Suppose L ∈ RM . There are cases and subcases as follows.

164 ISSN 1916-9795 E-ISSN 1916-9809

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

Case 1. L1 ≡ λP.Q.
Then L�mcd (λP.QM)LM

2 for some terms QM and LM
2 such that Q�mcd QM , L2 �mcd LM

2 , and (λP.QM)LM
2 �1βM0 ≡A

M, with (λP.QM)LM
2 being the β-redex contracted, for some term M0. The case FV(P) = ∅ is easy. Suppose

FV(P) = {x1, . . . , xk}. Then there exist terms U = U1, . . . ,Uk, such that [U/x]P ≡ LM
2 , and M0 ≡ [U/x]QM .

(1.1) L ∈ RN .
Then there exist terms QN , LN

2 , N0, and V = V1, . . . ,Vk for N, analogous to QM , LM
2 , M0, and U,

respectively, for M. By induction, there exist terms Q∗ and L∗2 such that QM �mcd Q∗, QN �mcd Q∗,
LM

2 �mcd L∗2, and LN
2 �mcd L∗2. Since LM

2 �mcd L∗2 and LN
2 �mcd L∗2, by Lemma 4.1.8 L∗2 ≡A [U′/x]P and

L∗2 ≡A [V ′/x]P for some terms U′ = U′
1, . . . ,U

′
k
, V ′ = V ′

1, . . . ,V
′
k

such that Ui �mcd U′
i , and Vi �mcd V ′

i for
all 1 ≤ i ≤ k. Since [U′/x]P ≡A L∗2 ≡A [V ′/x]P, by Lemma 3.1.7, for each 1 ≤ i ≤ k, U′

i ≡A V ′
i . Since

Vi �mcd V ′
i ≡A U′

i , by Proposition 4.1.7, Vi �mcd U′
i for all 1 ≤ i ≤ k. Choose T ≡ [U′/x]Q∗.

(1.2) L � RN .
Then N ≡A (λP.QN)LN

2 for some terms QN and LN
2 such that Q �mcd QN and L2 �mcd LN

2 . By induction,
there exist terms Q∗ and L∗2 such that QN �mcd Q∗ and LN

2 �mcd L∗2, both without α-steps, and QM �mcd Q∗
and LM

2 �mcd L∗2. By Lemma 4.1.8, L∗2 ≡A [V/x]P for some terms V = V1, . . . ,Vk such that Ui �mcd Vi

for all 1 ≤ i ≤ k. Since L ≡ (λP.Q)L2 is contractible, there exist terms W = W1, . . . ,Wk such that
[W/x]P ≡ L2. Since L2 �mcd LN

2 �mcd L∗2, by Lemma 4.1.8, LN
2 ≡A [W ′/x]P and L∗2 ≡A [W ′′/x]P for some

terms W ′ = W ′
1, . . . ,W

′
k
, and W ′′ = W ′′

1 , . . . ,W
′′
k

such that Wi �mcd W ′
i �mcd W ′′

i for all 1 ≤ i ≤ k. Since
[W ′′/x]P ≡A L∗2 ≡A [V/x]P, by Lemma 3.1.7, W′′

i ≡A Vi for all 1 ≤ i ≤ k. Choose T ≡ [V/x]Q∗.

Case 2. L1 ≡ (λP.Q | A).
Then L �mcd (λP.QM | AM)LM

2 for some terms QM and LM
2 , and some abstraction AM such that Q �mcd QM ,

A�mcd AM , L2 �mcd LM
2 , and (λP.QM | AM)LM

2 �1δM0 ≡A M, with (λP.QM | AM)LM
2 being the δ-redex contracted,

for some term M0.

(2.1) L ∈ RN .
Then there exist terms QN , LN

2 , AN , and N0, analogous to QM , LM
2 , AM , and M0, for M. By induction,

there exist terms Q∗, A∗ and L∗2 such that QM �mcd Q∗, QN �mcd Q∗, AM �mcd A∗, AN �mcd A∗, LM
2 �mcd L∗2,

and LN
2 �mcd L∗2.

(2.1.1) (λP.QM | AM)LM
2 �1δ (λP.QM)LM

2 .
Then by Lemma 3.2.11, (λP.QN | AN)LN

2 �1δ (λP.QN)LN
2 . Choose T ≡ (λP.Q∗)L∗2.

(2.1.2) (λP.QM | AM)LM
2 �1δ AMLM

2 .
By contradiction, using an argument similar to the above, we have that (λP.QN)LN

2 is not a β-redex,
so (λP.QN | AN)LN

2 �1δ AN LN
2 . Choose T ≡ A∗L∗2.

(2.2) L � RN .
Then N ≡A (λP.QN | AN)LN

2 for some terms QN and LN
2 and some abstraction AN such that Q �mcd

QN , A�mcd AN , and L2�mcd LN
2 . By induction, there exist terms Q∗, A∗, and L∗2, such that QN �mcd Q∗, AN �mcd

A∗, and LN
2 �mcd L∗2, all without α-steps, and QM �mcd Q∗, AM �mcd A∗, and LM

2 �mcd L∗2.

(2.2.1) (λP.QM | AM)LM
2 �1δ (λP.QM)LM

2 .
Then (λP.QM)LM

2 is a β-redex. Since LM
2 �mcd L∗2, by Lemma 3.2.11, there exists a term L0

2 such that
L∗2 ≡A L0

2 and (λP.QN)L0
2 is a β-redex. Choose T ≡ (λP.Q∗)L0

2.
(2.2.2) (λP.QM | AM)LM

2 �1δ AMLM
2 .

By contradiction we can show that (λP.Q∗ | A∗)L∗2 �1δ A∗L∗2. Choose T ≡ A∗L∗2. �

Theorem 4.2.2. (The Church-Rosser Theorem for βδ-reduction)
For any terms L,M, and N, if L �βδ M and L �βδ N, then there exists a term T such that M �βδ T and N �βδ T.

Proof. Using the fact that our new �βδ allows ≡A, and a single ≡A is an �mcd, the proof remains the same as the original.
(Vejjajiva, 1997, pp. 64–65) �

Since the congruence ≡A is encapsulated within the reduction �βδ, we can define βδ-normal forms and βδ-equality in
exactly the same way as in the original lambda calculus with patterns. (Vejjajiva, 1997; Vejjajiva & Hall, 2002) By using
the fact that the new �βδ allows ≡A, and a single ≡A is an �mcd, the standard results remain true and the proofs remain
unchanged except for some modifications to include the new congruence ≡A.

5 Conclusion

We have extended the concept of computability to functions on an arbitrary first-order structure using the lambda calculus
with patterns. In doing so, we added a new congruence, congruence in a structure, which we proved to preserve all the
basic properties of the original lambda calculus including the Church-Rosser Theorem. It is interesting to notice that,

Published by Canadian Center of Science and Education 165

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

when defining patterns using the non-logical symbols from a language, only the function symbols which represent one-
to-one functions are allowed in a pattern. Such a constraint is neccessary for the validity of the Church-Rosser theorem.
For example, if we are allowed to use the symbol A, which represents the addition function on the natural numbers, in
patterns, then (λAxy.x)2̄ ≡A (λAxy.x)(A1̄1̄) �β 1̄ and (λAxy.x)2̄ ≡A (λAxy.x)(A0̄2̄) �β 0̄, but 1̄ and 0̄ do not reduce to
anything common, so the Church-Rosser theorem would fail to hold.

The remaining task is to justify the word “computable”. By Church’s Thesis, it is widely accepted that a function on
N is computable if and only if it is recursive (Kechris, p.3.30). For further information about recursive functions and
computability see Rogers, 1992. If it could be shown that a function on N is recursive if and only if it is computable
relative to N, the standard structure for the natural numbers, then we would have strong evidence to justify the use of the
word ”computable”. The forward direction of such a proof should be straightforward, involving only the construction of
terms representing the initial functions, composition, primitive recursion, and the restricted μ-operator. A proof of the
converse appears more challenging. It would most likely be done via arithmetization (Mendelson, 1997), whereby each
term in the lambda calculus with patterns is encoded by a Gödel code and the reduction of an encoded term is done using
recursive functions. The authors are currently working on this approach.

References

Barendregt, H.P. (1997). The Impact of the Lambda Calculus in Logic and Computer Science. The Bulletin of Symbolic

Logic, 3 (2), 181–215.

Barendregt, H.P. (2001). The lambda calculus: Its syntax and semantics (5th impression). Amsterdam: Elsevier Science
B.V.

Blum, L., Shub, M., & Smale, S. (1989). On a theory of computation and complexity over the real numbers: NP-
Completeness, recursive functions and universal machines. Bullentin of the American Mathematical Society, 21 (1), 1–46.

Cardone, F., & Hindley, J. R. (2006). History of Lambda-calculus and Combinatory Logic. Handbook of the History of

Logic: Vol. 5. Amsterdam: Elsevier Science B.V.

Hindley, J. R., & Seldin, J. P. (1986). Introduction to combinators and λ-calculus. Cambridge: Cambridge University
Press.

Kechris, A. S. Mathematical logic and axiomatic set theory. (Lecture Notes).

Koepke, P. (2005). Turing Computations on Ordinals. The Bulletin of Symbolic Logic, 11 (3), 377–397.

Mendelson, E. (1997). Introduction to mathematical logic. Florida: Chapman & Hall/CRC.

Rogers, H. (1992). Theory of recursive functions and effective computability (3rd printing). Cambridge: MIT Press.

Santos, E.S. (1971). Computability by Probabilistic Turing Machines. Transactions of the American Mathematical Soci-

ety, 159, 165–184.

Vejjajiva, P. (1997). A Lambda-Calculus with Patterns. Master’s Thesis. Department of Mathematics, Chulalongkorn
University.

Vejjajiva, P. & Hall, M. E. (2002). A Lambda-Calculus with Patterns. Proceedings of the International Conference on

Algebra and Its Applications (ICAA 2002), 266-277.

166 ISSN 1916-9795 E-ISSN 1916-9809

