Singular Values of Two Parameter Families $\lambda\dfrac{e^{az}-1}{z}$ and $\lambda\dfrac{z}{e^{az}-1}$
- Mohammad Sajid
 
Abstract
The singular values of two parameter families of entire functions $f_{\lambda,a}(z)=\lambda\frac{e^{az}-1}{z}$, $f_{\lambda,a}(0)=\lambda a$ and meromorphic functions $g_{\lambda,a}(z)=\lambda\frac{z}{e^{az}-1}$, $g_{\lambda,a}(0)=\frac{\lambda}{a}$, $\lambda, a \in \mathbb{R} \backslash \{0\}$, $z \in \mathbb{C}$, are investigated. It is shown that all the critical values of $f_{\lambda,a}(z)$ and $g_{\lambda,a}(z)$ lie in the right half plane for $a<0$ and lie in the left half plane for $a>0$. It is described that the functions $f_{\lambda,a}(z)$ and $g_{\lambda,a}(z)$ have infinitely many singular values. It is also found that all the singular values $f_{\lambda,a}(z)$ are bounded and lie inside the open disk centered at origin and having radius $|\lambda a|$ and all the critical values of $g_{\lambda,a}(z)$ belong to the exterior of the disk centered at origin and having radius $|\frac{\lambda}{a}|$.
-  Full Text: 
 PDF 
                            
                     - DOI:10.5539/jmr.v8n1p10
 
Index
- ACNP
 - Aerospace Database
 - BASE (Bielefeld Academic Search Engine)
 - Civil Engineering Abstracts
 - CNKI Scholar
 - DTU Library
 - EconPapers
 - Elektronische Zeitschriftenbibliothek (EZB)
 - EuroPub Database
 - Google Scholar
 - Harvard Library
 - IDEAS
 - Infotrieve
 - JournalTOCs
 - MathGuide
 - MathSciNet
 - Open policy finder
 - RePEc
 - ResearchGate
 - Scilit
 - Technische Informationsbibliothek (TIB)
 - The Keepers Registry
 - UCR Library
 - Universe Digital Library
 - WorldCat
 
Contact
- Sophia WangEditorial Assistant
 - jmr@ccsenet.org