On Different Types of Chaos for $\mathbb{Z}^d$-Actions
- Sejal Shah
- Ruchi Das
Abstract
In this paper we obtain a characterization of $k$-typetransitivity for a $\mathbb{Z}^d$-action on certain spaces and
then prove that $k$-type SDIC is redundant in the definition of
$k$-type Devaney chaos for $\mathbb{Z}^d$-actions on infinite
metric spaces. We define different types of chaos for
$\mathbb{Z}^d$-actions and prove results related to their
preservations under conjugacy and uniform conjugacy. Finally we
discuss $k$-type properties on product spaces.
- Full Text: PDF
- DOI:10.5539/jmr.v7n3p191
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org