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Abstract

In this paper we obtain a characterization of k-type transitivity for a Zd-action on certain spaces and then prove
that k-type SDIC is redundant in the definition of k-type Devaney chaos for Zd-actions on infinite metric spaces.
We define different types of chaos for Zd-actions and prove results related to their preservations under conjugacy
and uniform conjugacy. Finally we discuss k-type properties on product spaces.
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1. Introduction

Poincaré’s work on celestial mechanics led to the discovery that ordinary differential equations can exhibit sensitive
dependence on initial conditions, characterized by the possibility that two trajectories starting close together could
diverge and eventually become uncorrelated. The new paradigm of chaos adopts the position that unpredictable
and seemingly lawless disorder can be ascribed to simple deterministic rules. It might have been supposed that,
with the advent of computers, the mathematical theory of chaotic dynamical systems would simply come to an end.
In fact, the opposite is true, namely that nonlinear dynamics is one of the fastest growing fields of mathematics.
The Mathematical term chaos was first introduced by Li and Yorke in 1975, where the authors gave a criterion
on the existence of chaos for interval maps, known as “period three implies chaos”. Since then chaos theory has
played very important role in the study of dynamical systems even in nonlinear science. Lots of work have been
done by now in the area of dynamical systems, making possible a well established theory of chaos. Chaos theory
has applications in physical, biological, social sciences and technology.

Mathematically it is a natural question after rephrasing the idea of dynamical systems in terms of Z-actions or
R-actions i.e., either discrete or continuous time evolutions to look at G-actions. In recent years there has been
considerable progress in the study of higher dimensional actions i.e., actions of Zd and Rd with d > 1. Historically
much of the interest in Zd-actions arised from the study of classical lattice gas models. The simplest case where
d = 1 led to the development of the thermodynamic approach to the ergodic theory of Anosov and Axiom A
systems during 1960’s and 1970’s. The theory of edge shifts is used in computer science to adapt (by a recoding)
data to the technical restrictions of a data storage media. Although many media are in fact two-dimensional (like
a compact disc), they are used in a one-dimensional way (the data is arranged in many circles on the disc) and a
one-dimensional recoding is used. However, some experimental media are now used as two-dimensional media
and one reason to study Z2-actions is to develop a theory of coding in that context. In [Einsiedler, Lind, Miles and
Ward, 2001], authors have studied expansive Zd-action and determine whether subgroups of Zd also act expansive.
In [Einsiedler and Schmidt, 1997], authors study various aspects of symbolic Zd-actions, where X ⊆ AZd

is a
(closed and shift invariant) subset of the full shift and use the restriction of the shift action to the space X.

In [Afraimovich and Chow, 1995], authors study a Zd-action on a finite dimensional subset of a Banach space
representing a set of equilibrium solutions of a lattice dynamical systems. In [Schmidt, 1998], author study sym-
bolic Zd-action. In [Oprocha, 2008], introducing the concept of k-type transitivity, author has proved the spectral
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decomposition theorem for multidimensional discrete-time dynamical systems which is a generalized version of
similar results obtained by S. Smale and R. Bowen for certain maps and flows. In [Kim and Lee, 2014] authors
have proved general version of the spectral decomposition theorem for the set of k-type nonwandering points of
Z2-actions.

Different types of chaos have been defined and studied by various authors. Most definitions of chaos are based on
one of the following aspects: complex trajectory behaviour of points, sensitive dependence on initial conditions,
fast growth of different orbits of length n, strong recurrence property. For more details one can refer the survey
article on chaos by [Li and Ye, 2015]. In [Shah and Das, 2015], we have defined and studied k-type Devaney
chaos for Zd-actions. In [Lu, Zhu and Wu, 2013], authors have studied retentivity of different types of chaos under
topological conjugacy and uniform conjugacy.

In section 2, we obtain a characterization of k-type transitivity on certain spaces and then prove that k-type SDIC
is redundant in the definition of k-type Devaney chaos for Zd-actions on infinite metric spaces. In section 3, we
define different types of chaos for Zd-actions and prove that they are preserved under conjugacy. In section 4,
we define notions of k-type dense chaos, k-type dense δ-chaos and k-type Auslander-Yorke chaos and prove their
preservation under uniform conjugacy. We finally discuss k-type properties on product spaces in section 5.

We first discuss some basic notions related to Zd-actions. Let (X, ρ) be a metric space. A Zd-action on X is a
continuous map T : Zd × X → X such that

(i) T (0, x) = x, for every x ∈ X,

(ii) T (n,T (m, x)) = T (n + m, x), for all n,m ∈ Zd and for every x ∈ X.

For a Zd-action T : Zd × X → X, T n : X → X is defined by T n(x) = T (n, x) for all n ∈ Zd and x ∈ X.
The map T n is a homeomorphism on X, for every n ∈ Zd. Let e1, e2, ..., ed denote the standard canonical basis
vectors of Rd. For d ∈ N, let k ∈ {1, 2, ..., 2d} and let kb represent k − 1 in the d-positional binary system, i.e.,
kb ∈ {0, 1}d, k = 1 +

∑d
i=1 kb

i 2i−1. Let k ∈ {1, 2, ..., 2d} and let x = (x1, x2, ..., xd), y = (y1, y2, ..., yd) ∈ Zd. We say
that x ≥k y if (−1)kb

i xi ≥ (−1)kb
i yi, for i = 1, 2, ..., d [Oprocha, 2008]. For any j = ( j1, j2, ..., jd) ∈ Zd we define

∥ j ∥= max{| ji| : i = 1, 2, ..., d}.
Let T : Zd × X → X be a Zd-action on X. T is k-type transitive if for any two nonempty open sets G and H, there
exists n >k 0 such that T n(G) ∩ H , ϕ [Oprocha, 2008]. A point x ∈ X is called a k-type periodic point if there
is an n ∈ Zd, n >k 0 satisfying T n(x) = x [Shah and Das, 2015]. For x ∈ X, Ok

T (x) = {T n(x)|n ≥k 0} is called the
k-type orbit of x. T has k-type sensitive dependence on initial conditions (k-type SDIC) if there exists δ > 0 such
that for every x ∈ X and for every ϵ > 0, there exist y ∈ Bρ(x, ϵ) and n >k 0 such that ρ(T n(x),T n(y)) > δ [Shah and
Das, 2015].

2. k-type Devaney Chaos Using a Characterization of k-type Transitivity

In [Shah and Das, 2015], authors have introduced the notion of k-type Devaney chaos for a Zd-action T : Zd×X →
X on a compact metric space X. A map T is said to be k-type Devaney Chaotic if T is k-type transitive, T has
dense set of k-type periodic points and T has k-type SDIC. We prove here that under certain conditions on space
X, k-type transitivity is equivalent to existence of a dense k-type orbit analogous to Proposition 1.1 in [Silverman,
1992]. We also prove that k-type SDIC is redundant in the definition of k-type Devaney chaos for infinite metric
spaces.

Theorem 2.1. Let X be a perfect space and let T : Zd × X → X be a Zd-action on X. Then T has a dense k-type
orbit implies T has k-type transitivity. If X is separable and of second category then T has k-type transitivity
implies T has a dense k-type orbit.

Proof. Suppose T has dense k-type orbit say Ok
T (x) = {T n(x)|n ≥k 0}. Let U and V be nonempty open sets in X

then by denseness of k-type orbit, there exists m ≥k 0 such that T m(x) ∈ U. Consider the set W = V − {T i(x)|i ≥k 0
and ∥ i ∥≤∥ m ∥}, which is nonempty and open. Since Ok

T (x) is dense in X, there exists l ≥k 0 such that T l(x) ∈ W.
Clearly l >k m and hence l − m >k 0 and T l−m(U) ∩ V , ϕ. Hence T is k-type transitive.

Next, suppose X is separable and of second category then X is second countable and hence has a countable basis,
say {Vλ}∞λ=1. Suppose T has no dense k-type orbit then for any x ∈ X, {T n(x)|n ≥k 0} is not dense in X, which
implies that for any x ∈ X, there exists Vλ(x) such that T n(x) < Vλ(x) for all n ≥k 0. Let V = ∪n≥k0T−n(Vλ(x)) then
V is open and intersects every open set as T is k-type transitive. Let Aλ(x) = X − ∪n≥k0T−n(Vλ(x)) then Aλ(x) is
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closed and x ∈ Aλ(x). By definition of Aλ(x), it follows that Aλ(x) is nowhere dense and X = ∪x∈X Aλ(x). Thus X is a
countable union of nowhere dense sets which is a contradiction. Hence the proof.

We now prove that k-type SDIC is redundant in the definition of k-type Devaney chaos for infinite metric spaces.

Theorem 2.2. Let X be an infinite metric space and let T : Zd × X → X be a Zd-action on X. If T has a
dense k-type orbit and has dense set of k-type periodic points then T has k-type sensitive dependence on initial
conditions.

Proof. Note that since X is infinite therefore T has dense k-type orbit and has dense set of k-type periodic points
implying that the space X is perfect. Therefore by Theorem 2.1 T is k-type transitive. Let p be a periodic point
in X and let q ∈ X be such that q < Ok

T (p). Let p′ ∈ Ok
T (p) be such that d = ρ(p′, q) = ρ(Ok

T (p), q). Suppose T
does not have k-type SDIC then there exist x ∈ X and a neighborhood N(x) of x such that diam(T n(N(x))) < d

4 ,
for every n ≥k 0 . Since T has dense set of k-type periodic points, N(x) contains a k-type periodic point, say y of
period l. By continuity of T , there exists a neighborhood N(p) of p such that if z ∈ N(p) then ρ(Tα(z),Tα(p)) < d

4 ,
for 0 ≤∥ α ∥<∥ l ∥. Let N(q) be a neighborhood of q with diam(N(q)) < d

4 . By k-type transitivity of T , there
exists m >k 0 such that T m(N(x)) ∩ N(p) , ϕ and there exists j >k 0 such that T j(N(x)) ∩ N(q) , ϕ. Observe that
ρ(T m+α(y),Tα(p)) < d

2 , for 0 ≤∥ α ∥<∥ l ∥ and ρ(T j(y), q) < d
2 . Since {T m(T i(y))|i ≥k 0} exhausts all the points of

the orbit of y therefore T j(y) = T m+α(y), for some α such that ∥ α ∥<∥ l ∥. By triangle inequality it follows that
ρ(Tα(p), q) < d, which is a contradiction by definition of d.

3. Different Types of Chaos for Zd-actions Preserved under Conjugacy

In this section, we define different types of chaos for Zd-actions on an infinite metric space and prove that they are
preserved under conjugacy.

Definition 3.1. Let T : Zd × X → X be a Zd-action on X then T is said to be k-type exact if for any nonempty open
set U ⊂ X there exists m ∈ Zd such that m >k 0 and T m(U) = X.

Definition 3.2. Let T : Zd × X → X be a Zd-action on X then T is said to be k-type exact Devaney chaotic
(k-EDevC) if T is k-type exact and has dense set of k-type periodic points.

Let T : Zd × X → X be a Zd-action on X. Then T is k-type mixing if for any two nonempty open sets U and V of
X, there exists N ∈ Zd such that T n(U) ∩ V , ϕ, for all n >k N [Shah and Das, 2015].

Definition 3.3. Let T : Zd × X → X be a Zd-action on X then T is said to be k-type mixing Devaney chaotic
(k-MDevC) if T is k-type mixing and has dense set of k-type periodic points.

Let T : Zd × X → X be a Zd-action on X then T is k-type weak mixing if for every pair of nonempty open sets
(G1,G2), (H1,H2) in X × X there exists n >k 0 in Zd such that T n(Gi) ∩ Hi , ∅, for i = 1, 2 [Shah and Das, 2015].

Definition 3.4. Let T : Zd × X → X be a Zd-action on X then T is said to be k-type weak mixing Devaney chaotic
(k-WMDevC) if T is k-type weak mixing and has dense set of k-type periodic points.

Remark 3.5. By definitions we have:

k-EDevC =⇒ k-MDevC =⇒ k-WMDevC =⇒ k-DevC

Definition 3.6. (Shah and Das, 2015) Let T1 : Zd × X → X and T2 : Zd × Y → Y be Zd-actions on X and
Y respectively then T1 and T2 are said to be conjugate if there exists a homeomorphism h : X → Y such that
h ◦ T n

1 = T n
2 ◦ h, for every n ∈ Zd.

Lemma 3.7. Let T1 : Zd × X → X and T2 : Zd × Y → Y be conjugate Zd-actions then T1 is k-type exact if and
only if T2 is k-type exact.

Proof. By conjugacy, there exists a homeomorphism h : X → Y such that h ◦ T n
1 = T n

2 ◦ h, for every n ∈ Zd.

Suppose T1 is k-type exact. Let V be a nonempty open set in Y then h−1(V) is a nonempty open set in X. By k-type
exactness of T1, there exists n >k 0 such that T n

1 (h−1(V)) = X. Therefore X = T n
1 (h−1(V)) = h−1(T n

2 (V)) which
implies T n

2 (V) = Y . Hence T2 is k-type exact.

Converse follows using openness of h and conjugacy condition.

Lemma 3.8. Let T1 : Zd × X → X and T2 : Zd × Y → Y be conjugate Zd-actions on X and Y respectively then T1
is k-type mixing if and only if T2 is k-type mixing.
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Proof. By conjugacy, there exists a homeomorphism h : X → Y such that h ◦ T n
1 = T n

2 ◦ h, for every n ∈ Zd.

Suppose T1 is k-type mixing. Let V1 and V2 be two nonempty open sets in Y then h−1(V1) and h−1(V2) are nonempty
open sets in X. By k-type mixing property of T1, there exists N >k 0 such that T n

1 (h−1(V1))∩h−1(V2) , ϕ, for every
n >k N. We therefore have h−1(T n

2 (V1))∩ h−1(V2) , ϕ, for every n >k N. Hence T n
2 (V1)∩V2 , ϕ, for every n >k N

proving T2 is k-type mixing.

Conversely suppose T2 is k-type mixing. Let U1 and U2 be two nonempty open sets in X then h(U1) and h(U2) are
nonempty open sets in Y . By k-type mixing property of T2, there exists M >k 0 such that T m

2 (h(U1)) ∩ h(U2) , ϕ,
for every m >k M. Using conjugacy, we have h(T m

1 (U1))∩ h(U2) , ϕ, for every m >k M. Hence T m
1 (U1)∩U2 , ϕ,

for every m >k M proving T1 is k-type mixing.

Lemma 3.9. Let T1 : Zd × X → X and T2 : Zd × Y → Y be conjugate Zd-actions on X and Y respectively then T1
is k-type weak mixing if and only if T2 is k-type weak mixing.

Proof. By conjugacy, there exists a homeomorphism h : X → Y such that h ◦ T n
1 = T n

2 ◦ h, for every n ∈ Zd.

Suppose T1 is k-type weak mixing. Let (V1,V2) and (W1,W2) be nonempty open sets in Y × Y . For the nonempty
open sets (h−1(V1), h−1(V2)) and (h−1(W1), h−1(W2)) of X × X, by k-type weak mixing property of T1, there exists
n >k 0 such that T n

1 (h−1(Vi)) ∩ h−1(Wi) , ϕ, for i = 1, 2. This implies that h−1(T n
2 (Vi)) ∩ h−1(Wi) , ϕ, for i = 1, 2.

Thus T n
2 (Vi) ∩Wi , ϕ, for i = 1, 2 proving that T2 is k-type weak mixing.

Conversely suppose T2 is k-type weak mixing. Let (G1,G2) and (H1,H2) be nonempty open sets in X × X. Then
(h(G1), h(G2)) and (h(H1), h(H2)) are nonempty open sets in Y × Y . By k-type weak mixing property of T2, there
exists m >k 0 such that T m

2 (h(Gi)) ∩ h(Hi) , ϕ, for i = 1, 2 which implies that h(T m
1 (Gi)) ∩ h(Hi) , ϕ, for i = 1, 2.

Thus T m
1 (Gi) ∩ Hi , ϕ, for i = 1, 2 proving that T1 is k-type weak mixing.

Theorem 3.10. Let X and Y be infinite metric spaces and let T1 : Zd × X → X and T2 : Zd × Y → Y be conjugate
Zd-actions on X and Y respectively then T1 is k-type Devaney chaotic if and only if T2 is k-type Devaney chaotic.

Proof. By conjugacy, there exists a homeomorphism h : X → Y such that h ◦ T n
1 = T n

2 ◦ h, for every n ∈ Zd.

Suppose T1 is k-type Devaney chaotic. Then T1 is k-type transitive. Let V1 and V2 be two nonempty open sets in
Y then h−1(V1) and h−1(V2) are nonempty open sets in X. By k-type transitivity of T1, there exists n >k 0 such that
T n

1 (h−1(V1))∩ h−1(V2) , ϕ. We therefore have h−1(T n
2 (V1))∩ h−1(V2) , ϕ. Hence T n

2 (V1)∩V2 , ϕ proving T2 is k-
type transitive. We now show that k-type periodic density of T1 implies k-type periodic density of T2. Let Perk(T1)
denote the set of all k-type periodic points of T1 then h(Perk(T1)) ⊂ Perk(T2). Further h(Perk(T1)) = h(X) = Y and
h(Perk(T1)) ⊂ h(Perk(T1)) ⊂ Perk(T2) implies that Perk(T2) = Y , where S denotes closure of S ⊂ X in X. Hence
using Theorem 2.2, we get T2 is k-type Devaney chaotic. Proof for k-type Devaney chaoticity of T1 when T2 is
k-type Devaney chaotic follows similarly.

By similar arguments, we have following results.

Theorem 3.11. Let T1 : Zd × X → X and T2 : Zd × Y → Y be conjugate Zd-actions on X and Y respectively then
T1 is k-EDevC if and only if T2 is k-EDevC.

Theorem 3.12. Let T1 : Zd × X → X and T2 : Zd × Y → Y be conjugate Zd-actions on X and Y respectively then
T1 is k-MDevC if and only if T2 is k-MDevC.

Theorem 3.13. Let T1 : Zd × X → X and T2 : Zd × Y → Y be conjugate Zd-actions on X and Y respectively then
T1 is k-WMDevC if and only if T2 is k-WMDevC.

4. Different Types of Chaos for Zd-actions Preserved under Uniform Conjugacy

In this section, we define different types of chaos for Zd-actions and prove that they are preserved under uniform
conjugacy.

Let X and Y be metric space. A homeomorphism h : X → Y is said to be uniform homeomorphism if both h and
h−1 are uniformly continuous.

Definition 4.1. Let T1 : Zd × X → X and T2 : Zd × Y → Y be Zd-actions on X and Y respectively then T1 and T2
are said to be uniformly conjugate if there exists a uniform homeomorphism h : X → Y such that h ◦ T n

1 = T n
2 ◦ h,

for every n ∈ Zd.

Definition 4.2. Let T : Zd × X → X be a Zd-action on X. A pair {x, y} in X is called a k-type Li-Yorke pair if there
exists a sequence {ts}, ts+1 >

k ts satisfying
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lim sups→∞ ρ(T
ts (x),T ts (y)) > 0,

lim inf s→∞ ρ(T ts (x),T ts (y)) = 0.

The set of k-type Li-Yorke pairs of a Zd-action T on X is denoted by LYk(T ), i.e.,

LYk(T ) = {(x, y) ∈ X × X| lim sups→∞ ρ(T
ts (x),T ts (y)) > 0, lim inf s→∞ ρ(T ts (x),T ts (y)) = 0}.

The set of k-type Li-Yorke pairs with modulus δ of a Zd-action T on X is denoted by LYk(T, δ), i.e.,

LYk(T, δ) = {(x, y) ∈ X × X| lim sups→∞ ρ(T
ts (x),T ts (y)) > δ, lim inf s→∞ ρ(T ts (x),T ts (y)) = 0}.

Definition 4.3. Let T : Zd × X → X be a Zd-action on X. Then T is said to be k-type densely chaotic if LYk(T ) =
X × X.

Definition 4.4. Let T : Zd ×X → X be a Zd-action on X. Then T is said to be k-type densely δ-chaotic if LYk(T, δ)
= X × X.

Example 4.5. Consider T : Z2 × S 1 → S 1 defined by T ((n1, n2), θ) = 2n1+n2θ. For 0 < δ < 1 and k ∈ {2, 3},
LYk(T, δ) = S 1 × S 1. Thus T is k-type densely δ-chaotic for k ∈ {2, 3}.
Theorem 4.6. Let T1 : Zd × X → X and T2 : Zd × Y → Y be uniformly conjugate Zd-actions on metric spaces
(X, ρ1) and (Y, ρ2) respectively then T1 is k-type densely chaotic if and only if T2 is k-type densely chaotic.

Proof. By uniform conjugacy, there exists a uniform homeomorphism h : X → Y such that h ◦ T n
1 = T n

2 ◦ h, for
every n ∈ Zd.

For (y1, y2) ∈ Y × Y , y1 , y2, there exists (x1, x2) ∈ X × X, x1 , x2, such that h(x1) = y1 and h(x2) = y2. By
continuity of map h, for every ϵ > 0, there exists δ > 0 such that h(Bρ1 (x, δ)) ⊂ Bρ2 (y, ϵ). Since T1 is densely
k-type chaotic, LYk(T1) = X × X. Thus there exists x∗ = (x1, x2) ∈ Bρ1 (x, δ) ∩ LYk(T1). By definition of LYk(T1),
it follows that lim sups→∞ ρ1(T ts

1 (x1),T ts
1 (x2)) > 0 and lim inf s→∞ ρ1(T ts

1 (x1),T ts
1 (x2)) = 0. Let y∗ = (h(x1), h(x2)).

Then y∗ ∈ Bρ2 (y, ϵ) and

lim sups→∞ ρ2(T ts
2 (h(x1)),T ts

2 (h(x2)))
= lim sups→∞ ρ2(h(T ts

1 (x1)), h(T ts
1 (x2))) > 0,

as h−1 is uniformly continuous.

Otherwise we can find a subsequence of the convergent sequence {ρ2(h(T ts
1 (x1)), h(T ts

1 (x2)))}∞s=0 whose limit is
0. We can continue to write the subsequence as {ρ2(h(T ts

1 (x1)), h(T ts
1 (x2)))}∞s=0. By definition of convergence,

for every ϵ > 0, there exists N ∈ N such that ρ2(h(T ns (x1)), h(T ns (x2))) < ϵ for every s > N. By uniform
continuity of h−1, ρ1(T ns (x1),T ns (x2)) < δ, for every δ > 0. Therefore limit of arbitrary convergent subsequence of
{ρ1(T ns (x1), T ns (x2))}∞s=0 is 0 and hence lim sups→∞ ρ1(T ts

1 (x1),T ts
1 (x2)) = 0 which is a contradiction.

Similarly using uniform continuity of h, one can prove that

lim inf s→∞ ρ2(T ts
2 (h(x1)),T ts

2 (h(x2))) = lim inf s→∞ ρ2(h(T ts
1 (x1)), h(T ts

2 (x2))) = 0.

This implies that y∗ = (h(x1), h(x2)) ∈ Bρ2 (y, ϵ) ∩ LYk(T2). Hence LYk(T2) = Y × Y implying T2 is densely k-type
chaotic. By similar arguments converse follows.

Following Theorem can be proved along the lines of the proof of Theorem 4.6.

Theorem 4.7. Let T1 : Zd × X → X and T2 : Zd × Y → Y be uniformly conjugate Zd-actions on metric spaces
(X, ρ1) and (Y, ρ2) respectively then T1 is k-type densely δ-chaotic if and only if T2 is k-type densely δ-chaotic.

Definition 4.8. Let T : Zd × X → X be a Zd-action on X. Then T is said to be k-type Auslander - Yorke chaotic if
T is k-type transitive and T has k-type sensitive dependence on initial conditions.

Theorem 4.9. Let T1 : Zd × X → X and T2 : Zd × Y → Y be uniformly conjugate Zd-actions on metric spaces
(X, ρ1) and (Y, ρ2) respectively then T1 is k-type Auslander-Yorke chaotic if and only if T2 is k-type Auslander-Yorke
chaotic.
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Proof. By uniform conjugacy, there exists a uniform homeomorphism h : X → Y such that h ◦ T n
1 = T n

2 ◦ h, for
every n ∈ Zd.

As proved in Theorem 3.10, T1 is k-type transitive if and only if T2 is k-type transitive. We now show that k-
type SDIC of T1 implies k-type SDIC of T2. Suppose T1 has k-type SDIC. Then by definition of k-type SDIC,
there exists ϵ > 0 such that for any x1 ∈ X and for any δ > 0 there exists x2 ∈ X such that ρ1(x1, x2) < δ and
ρ1(T n

1 (x1),T n
1 (x2)) > ϵ, for some n >k 0.

By uniform continuity of h−1, for above ϵ > 0 there exists η > 0 such that ρ2(h(x1), h(x2)) < η implies ρ1(x1, x2) <
ϵ. Let y1 = h(x1) ∈ Y and δ1 > 0 be given. By uniform continuity of h, there exists δ > 0 such that ρ1(x1, x2) < δ
implies ρ2(h(x1), h(x2)) < δ1. Choose x2 ∈ X such that ρ1(x1, x2) < δ then ρ2(h(x1), h(x2)) < δ1. Note that

ρ2(T n
2 (h(x1)),T n

2 (h(x2))) = ρ2(h(T n
1 (x1)), h(T n

1 (x2))) > η.

For if ρ2(h(T n
1 (x1)), h(T n

1 (x2))) < η then ρ1(T n
1 (x1),T n

1 (x2)) < ϵ which is a contradiction. Reverse implication can
be proved similarly.

5. k-type Properties on Product Spaces

In this section, we study k-type properties for product of two spaces. Let T1 : Zd × X → X and T2 : Zd × Y → Y
be Zd-actions on metric spaces (X, ρ1) and (Y, ρ2) respectively. We define a Zd-action on product space X × Y by
T1 × T2 : Zd × X × Y → X × Y by (T1 × T2)(n, (x, y)) = (T n

1 (x),T n
2 (y)). We define the metric ρ on X × Y by

ρ((x1, y1), (x2, y2)) = ρ1(x1, x2) + ρ2(y1, y2).

Lemma 5.1. Let T1 : Zd × X → X and T2 : Zd × Y → Y be Zd-actions on metric spaces (X, ρ1) and (Y, ρ2)
respectively. If T1 or T2 is k-type SDIC then T1 × T2 is k-type SDIC. If T1 × T2 is k-type SDIC then at least one of
T1 and T2 is k-type SDIC.

Proof. Suppose T1 is k-type SDIC. Let p = (x, y) ∈ X × Y and let W be a neighborhood of (x, y). Then there exists
neighborhood U of x in X and neighborhood V of y in Y such that U × V ⊂ W. Since T1 is k-type SDIC, there
exists δ > 0 such for some x′ ∈ U and n >k 0, we have ρ1(T n

1 (x),T n
1 (x′)) > δ. Let y′ ∈ V then p′ = (x′, y′) ∈ W and

ρ((T1 × T2)n(p), (T1 × T2)n(p′)) = ρ1((T1)n(x), T n
1 (x′)) + ρ2(T n

2 (y),T n
2 (y′)) ≥ ρ1(T n

1 (x),T n
1 (x′)) > δ.

Hence T1 × T2 has k-type SDIC.

Next, suppose T1 × T2 is k-type SDIC but neither T1 nor T2 is k-type SDIC. Note that for any δ > 0, there exist
x ∈ X and a neighborhood N(x) of x in X such that ρ1(T n

1 (x),T n
1 (x′)) < δ2 , for every x′ ∈ N(x) and for every n >k 0.

Similarly there exist y ∈ Y and a neighborhood N(y) of y in Y such that ρ2(T n
2 (y),T n

2 (y′)) < δ2 , for every y′ ∈ N(y)
and for every n >k 0. Thus we have

ρ((T1 × T2)n(x, y), (T1 × T2)n(x′, y′)) = ρ1(T n
1 (x),T n

1 (x′)) + ρ2(T n
2 (y),T n

2 (y′)) < δ,

for every (x′, y′) ∈ N(x) × N(y) implying T1 × T2 is not k-type SDIC which is a contradiction.

Lemma 5.2. Let T1 : Zd × X → X and T2 : Zd × Y → Y be Zd-actions on metric spaces (X, ρ1) and (Y, ρ2)
respectively then T1 × T2 is k-type mixing if and only if T1 and T2 are k-type mixing. Proof. Suppose T1 and T2
are k-type mixing. Given open sets G1,G2 ⊂ X × Y , there exist open sets U1,U2 ⊂ X and V1,V2 ⊂ Y such that
Ui × Vi ⊂ Gi for i = 1, 2. By k-type mixing property of T1 and T2, there exist n1 >

k 0, n2 >
k 0 in Zd such that

T n
1 (U1) ∩ U2 , ϕ, for n >k n1

T n
2 (V1) ∩ V2 , ϕ, for n >k n2

Choose n0 >
k 0 such that ∥ n0 ∥> max{∥ n1 ∥, ∥ n2 ∥}. Then

[(T1 × T2)n(U1 × V1)] ∩ (U2 × V2) = [T n
1 (U1) ∩ U2] × [T n

2 (V1) ∩ V2] , ϕ

for all n >k n0. Conversely, suppose T1 × T2 is k-type mixing. Let U1,U2 ⊂ X and V1,V2 ⊂ Y . Then for the open
sets U1 × V1,U2 × V2 by k-type mixing property of T1 × T2, there exists N >k 0 such that

[(T1 × T2)n(U1 × V1)] ∩ (U2 × V2) , ϕ, for all n >k N
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This implies that [T n
1 (U1)∩U2]×[T n

2 (V1)∩V2] , ϕ, for all n >k N and hence T n
1 (U1)∩U2 , ϕ and T n

2 (V1)∩V2 , ϕ,
for all n >k N, proving that T1 and T2 are k-type mixing.

By similar arguments, we have

Lemma 5.3. Let T1 : Zd × X → X and T2 : Zd × Y → Y be two Zd-actions on metric spaces (X, ρ1) and (Y, ρ2)
respectively. If T1 × T2 is k-type transitive then T1 and T2 are k-type transitive.
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