$L^{\Phi }-L^{\infty }$\ Inequalities and Applications
- Tiziano Granucci
Abstract
In this paper we prove some $L^{\Phi }-L^{\Phi }$ and $L^{\Phi }-L^{\infty }$inequalities for quasi-minima of scalar integral functionals defined inOrlicz-Sobolev space $W^{1}L^{\Phi }\left( \Omega \right) $, where $\Phi $\is a N-function and $\Phi \in \triangle _{2}$. Moreover, if $\Phi \in\triangle ^{^{\prime }}$ or if $\Phi \in \triangle _{2}\cap \nabla _{2}$, weprove that quasi-minima are H\"{o}lder continuous functions.- Full Text: PDF
- DOI:10.5539/jmr.v7n2p201
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org