Newton-like Schemes via the Method of Generalized Quasilinearization for Volterra Integral Equations of the Second Kind
- Cesar Martinez-Garza
Abstract
In this paper we use the Method of Generalized Quasilinearization to obtain Newton-like comparative schemes to solve the Volterra Integral equation of the Second Kind: $0=f(t,x)+\int_{t_0}^t K(t,s,x(s))ds$, which has an isolated zero, $x(t)=r(t)$ in ~$\Omega$ with ~$\Omega=\{(x,t)|\a_0(t)\leq x\leq\b_0(t),t\in J\}$, $J=[t_0,t_0 +T],~ T>0$,~where $f(t,x) \in C^{0,2}[J \times \Omega,\mathbb{R}]$, $K(t,s,x) \in C^{0,2}[J\times J\times\Omega,\mathbb{R}]$. Several cases where $f$ and $K$ are convex or concave functions are presented.- Full Text: PDF
- DOI:10.5539/jmr.v2n3p3
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org