On the Irreducibility of Artin's Group of Graphs
- Malak M. Dally
- Mohammad Abdulrahim
Abstract
We consider the graph $E_{3,1}$ with three generators $\sigma_1, \sigma_2, \delta$, where $\sigma_1$ has an edge with each of $\;\sigma_2$ and $\;\delta$. We then define the Artin group of the graph $E_{3,1}$ and consider its reduced Perron representation of degree three. After we specialize the indeterminates used in defining the representation to non-zero complex numbers, we obtain a necessary and sufficient condition that guarantees the irreducibility of the representation.- Full Text: PDF
- DOI:10.5539/jmr.v7n2p117
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org