On the Irreducibility of Artin's Group of Graphs

Malak M. Dally ${ }^{1}$ \& Mohammad N. Abdulrahim ${ }^{1}$
${ }^{1}$ Department of Mathematics, Beirut Arab University, Beirut, Lebanon
Correspondence: Mohammad N. Abdulrahim, Department of Mathematics, Beirut Arab University, P.O. Box 115020, Beirut, Lebanon. E-mail: mna@bau.edu.lb

Received: March 12, 2015 Accepted: March 30, 2015 Online Published: May 1, 2015
doi:10.5539/jmr.v7n2p117 URL: http://dx.doi.org/10.5539/jmr.v7n2p117

Abstract

We consider the graph $E_{3,1}$ with three generators $\sigma_{1}, \sigma_{2}, \delta$, where σ_{1} has an edge with each of σ_{2} and δ. We then define the Artin group of the graph $E_{3,1}$ and consider its reduced Perron representation of degree three. After we specialize the indeterminates used in defining the representation to non-zero complex numbers, we obtain a necessary and sufficient condition that guarantees the irreducibility of the representation.

Keywords: Artin representation, braid group, Burau representation, graph, irreducibility

1. Introduction

To any undirected simple graph T, we introduce the Artin group, A, which is defined as an abstract group with vertices of Γ as its generators and two relations: $x y=y x$ for vertices x and y that have no edge in common and $x y x=y x y$ if the vertices x and y have a common edge.
Let A_{n} be the graph having n vertices σ_{i} 's $(1 \leq i \leq n)$ in which σ_{i} and σ_{i+1} share a comon edge, where $i=1,2, \ldots, n-1$. We notice that the Artin group of A_{n} is the braid group on $n+1$ strands. That is, $A\left(A_{n}\right)=B_{n+1}$ (J.S.Birman, 1975).

Having defined A_{n}, we consider $E_{n+1, p}$, which is the graph obtained from A_{n} by adding a vertex δ and an edge connecting σ_{p} and δ. Here $1 \leq p \leq n$. It is easy to see that the graph A_{n} embeds in the graph $E_{n+1, p}$. That is, $A\left(A_{n}\right) \subset A\left(E_{n+1, p}\right)$. This induces an injection on B_{n+1} to $A\left(E_{n+1, p}\right)$. In other words, a representation of $A\left(E_{n+1, p}\right)$ yields a representation of B_{n+1}.
Knowing the reduced Burau representation of B_{n+1} of degree n, Perron extends such a representation to a representation of B_{n+1} of degree $2 n$. The representation obtained is referred to as Burau bis representation. Next, Perron constructs for each $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ a representation $\psi_{\lambda}: A\left(E_{n+1, p}\right) \rightarrow G L_{2 n}\left(Q\left(t, d_{1}, \ldots, d_{n}\right)\right)$, where $t, d_{1}, \ldots, d_{n} \lambda_{1}, \ldots, \lambda_{n}$ are indeterminates. We specialize t, d_{1}, \ldots, d_{n} to non zero complex numbers, and we study this representation explicitly in the case $n=2$ and $p=1$. We then reduce the complex specialization of the representation ψ_{λ} to a representation of degree 3 , namely $A\left(E_{3,1}\right) \rightarrow G L_{3}(\mathbb{C})$. A necessary and sufficient condition which guarantees its irreducibility is obtained in that case.

2. Burau bis Representation

Perron's strategy is to begin with the Burau representation of the braid group and extend it to a representation of $A\left(E_{n+1, p}\right)$. He begins with the reduced Burau representation: $B_{n+1} \rightarrow G L_{n}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$ defined as follows:

$$
\sigma_{i} \rightarrow J_{i}=\left(\begin{array}{c|ccc|c}
I_{i-2} & & 0 & & 0 \\
\hline & 1 & 0 & 0 & \\
0 & t & -t & 1 & 0 \\
& 0 & 0 & 1 & \\
\hline 0 & & 0 & & I_{n-i-1}
\end{array}\right)
$$

where I_{k} stands for the $k \times k$ identity matrix. Here, $i=2, \ldots, n-1$.

$$
\begin{aligned}
& \sigma_{1} \rightarrow J_{1}=\left(\begin{array}{cc|c}
-t & 1 & 0 \\
0 & 1 & 0 \\
\hline 0 & I_{n-2}
\end{array}\right) \\
& \sigma_{n} \rightarrow J_{n}=\left(\begin{array}{c|cc}
I_{n-2} & 0 \\
\hline 0 & \begin{array}{c}
1 \\
0 \\
t
\end{array} \\
\hline
\end{array}\right)
\end{aligned}
$$

Knowing that this representation is of degree n, Perron extends it to a representation of B_{n+1} of degree $2 n$. Let R_{i} denote an $n \times n$ block of zeros with a t placed in the $(i, i) t h$ position, and let I_{n} denote the $n \times n$ identity matrix. The obtained representation is referred to as the Burau bis representation. It is defined as follows:

$$
\begin{gathered}
\psi: B_{n+1} \rightarrow G l_{2 n}\left(\mathbb{Z}\left[t, t^{-1}\right]\right) \\
\psi\left(\sigma_{i}\right)=\left(\begin{array}{ll}
I_{n} & 0 \\
R_{i} & J_{i}
\end{array}\right), \quad 1 \leq i \leq n
\end{gathered}
$$

For more details, see (T.E.Brendle, 2002, B.Perron, 1999).

3. Perron Representation

The Burau bis representation extends to $A\left(E_{n+1, p}\right)$ for all possible values of n and p in the following way.
Let $b=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right), d=\left(\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right)$, and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
We define the following $n \times n$ matrices:

$$
\begin{gathered}
A=\left(\lambda_{1} b, \lambda_{2} b, \ldots, \lambda_{n} b\right) \\
B=(0, \ldots, 0, b, 0, \ldots, 0) \\
C=\left(\lambda_{1} d, \lambda_{2} d, \ldots, \lambda_{n} d\right) \\
D=(0, \ldots, 0, d, 0, \ldots, 0)
\end{gathered}
$$

where 0 denotes a column of n zeros.
For each $i=1, \ldots, n$, we have that b_{i} satisfies the following conditions

$$
\begin{gathered}
t b_{i}=-t d_{i-1}+(1+t) d_{i}-d_{i+1}, \quad i \neq p \\
t b_{p}=-t d_{p-1}+(1+t) d_{p}-d_{p+1}+t \\
\sum_{i=1}^{n} \lambda_{i} b_{i}=-\left(1+d_{p}+t\right)
\end{gathered}
$$

setting any undefined d_{j} equal zero.
For any choice $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we get a linear representation

$$
\psi_{\lambda}: A\left(E_{n+1, p}\right) \rightarrow G l_{2 n}(R)
$$

where R is the field of rational fractions in $\mathrm{n}+1$ indeterminates $\mathbb{Q}\left(t, d_{1}, \ldots, d_{n}\right)$.

$$
\psi_{\lambda}\left(\sigma_{i}\right) \rightarrow\left(\begin{array}{ll}
I_{n} & 0 \\
R_{i} & J_{i}
\end{array}\right)
$$

$$
\psi_{\lambda}(\delta) \rightarrow\left(\begin{array}{cc}
I_{n}+A & B \\
C & I_{n}+D
\end{array}\right)
$$

For more details, see (T.E.Brendle, 2002).

4. Reducibility of $\psi_{\lambda}: A\left(E_{3,1}\right) \rightarrow \boldsymbol{G} L_{4}(\mathbb{C})$

Having defined Perron's representation, we set $n=2$ and $p=1$ to get the following vectors. $b=\binom{b_{1}}{b_{2}}, d=\binom{d_{1}}{d_{2}}$, and $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$.
We get the following 2×2 matrices $\quad A=\left(\begin{array}{ll}\lambda_{1} b_{1} & \lambda_{2} b_{1} \\ \lambda_{1} b_{2} & \lambda_{2} b_{2}\end{array}\right), \quad B=\left(\begin{array}{ll}b_{1} & 0 \\ b_{2} & 0\end{array}\right), \quad C=\left(\begin{array}{ll}\lambda_{1} d_{1} & \lambda_{2} d_{1} \\ \lambda_{1} d_{2} & \lambda_{2} d_{2}\end{array}\right), \quad$ and $\quad D=$ $\left(\begin{array}{ll}d_{1} & 0 \\ d_{2} & 0\end{array}\right)$.

Simple computations show that the parameters satisfy the following equations:

- $t b_{2}=-t d_{1}+(1+t) d_{2}$
- $t b_{1}=(1+t) d_{1}-d_{2}+t$
- $\lambda_{1} b_{1}+\lambda_{2} b_{2}=-\left(1+t+d_{1}\right)$

Having defined the 2×2 matrices A, B, C and D, we obtain the multiparameter representation $A\left(E_{3,1}\right)$. This representation is of degree 4 . We specialize the parameters $\lambda_{1}, \lambda_{2}, b_{1}, b_{2}, d_{1}, d_{2}, t$ to values in $\mathbb{C}-\{0\}$. We further assume that $t \neq-1$ and $d_{2}=-t$. The representation $\psi_{\lambda}: A\left(E_{3,1}\right) \rightarrow G L_{4}(\mathbb{C})$ is defined as follows:

$$
\begin{aligned}
& \psi_{\lambda}\left(\sigma_{1}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
t & 0 & -t & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& \psi_{\lambda}\left(\sigma_{2}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & t & t & -t
\end{array}\right),
\end{aligned}
$$

and

$$
\psi_{\lambda}(\delta)=\left(\begin{array}{cccc}
1+\lambda_{1} b_{1} & \lambda_{2} b_{1} & b_{1} & 0 \\
\lambda_{1} b_{2} & \lambda_{2} b_{2}+1 & b_{2} & 0 \\
\lambda_{1} d_{1} & \lambda_{2} d_{1} & 1+d_{1} & 0 \\
-t \lambda_{1} & -t \lambda_{2} & -t & 1
\end{array}\right) .
$$

The graph $E_{3,1}$ has 3 vertices σ_{1}, σ_{2} and δ. Since $p=1$, it follows that the vertex δ has a common edge with $\sigma_{p}=\sigma_{1}$. Therefore, the following relations are satisfied.

$$
\begin{align*}
& \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2} \tag{1}\\
& \sigma_{2} \delta=\delta \sigma_{2} \tag{2}\\
& \sigma_{1} \delta \sigma_{1}=\delta \sigma_{1} \delta \tag{3}
\end{align*}
$$

We note that relation (1) is actually Artin's braid relation of the classical braid group, B_{3} having σ_{1} and σ_{2} as standard generators. This assures that a representation of $A\left(E_{3,1}\right)$ yields a representation of B_{3}.
Lemma 1 The representation $\psi_{\lambda}: A\left(E_{3,1}\right) \rightarrow G L_{4}(\mathbb{C})$ is reducible.
Proof. For simplicity, we write σ_{i} instead of $\psi_{\lambda}(k)$, where k is a generator of $A\left(E_{3,1}\right)$. The subspace $S=$ $\left\langle e_{1}+\frac{b_{2}}{b_{1}} e_{2}, e_{3}, e_{4}\right\rangle$ is an invariant subspace of dimension 3. To see this:

1. $\sigma_{1}\left(e_{1}+\frac{b_{2}}{b_{1}} e_{2}\right)=e_{1}+\frac{b_{2}}{b_{1}} e_{2}+t e_{3} \in S$
2. $\sigma_{2}\left(e_{1}+\frac{b_{2}}{b_{1}} e_{2}\right)=e_{1}+\frac{b_{2}}{b_{1}} e_{2}+t \frac{b_{2}}{b_{1}} e_{3} \in S$
3. $\delta\left(e_{1}+\frac{b_{2}}{b_{1}} e_{2}\right)=\left(1+\lambda_{1} b_{1}+\lambda_{2} b_{2}\right) e_{1}+\left(\lambda_{1} b_{2}+\frac{b_{2}}{b_{1}}\left(\lambda_{2} b_{2}+1\right)\right) e_{2}+$

$$
\begin{aligned}
& \left(\lambda_{1} d_{1}+\frac{b_{2}}{b_{1}} \lambda_{2} d_{1}\right) e_{3}+\left(-t \lambda_{1}+\frac{-t b_{2}}{b_{1}} \lambda_{2}\right) e_{4} \\
= & \left(1+\lambda_{1} b_{1}+\lambda_{2} b_{2}\right)\left(e_{1}+\frac{b_{2}}{b_{1}} e_{2}\right)+\left(\lambda_{1} d_{1}+\frac{b_{2}}{b_{1}} \lambda_{2} d_{1}\right) e_{3}+ \\
& \left(-t \lambda_{1}+\frac{-t b_{2}}{b_{1}} \lambda_{2}\right) e_{4} \in S
\end{aligned}
$$

4. $\sigma_{1} e_{3}=-t e_{3} \in S$
5. $\sigma_{2} e_{3}=e_{3}+t e_{4} \in S$
6. $\delta e_{3}=b_{1}\left(e_{1}+\frac{b_{2}}{b_{1}} e_{2}\right)+\left(1+d_{1}\right) e_{3}-t e_{4} \in S$
7. $\sigma_{1} e_{4}=e_{3}+e_{4} \in S$
8. $\sigma_{2} e_{4}=-t e_{4} \in S$
9. $\delta e_{4}=e_{4} \in S$

5. On the Irreducibility of $\psi_{\lambda}^{\prime}: A\left(E_{3,1}\right) \rightarrow G L_{3}(\mathbb{C})$

We consider the representation $\psi_{\lambda}: A\left(E_{3,1}\right) \rightarrow G L_{4}(\mathbb{C})$ restricted to the basis $e_{1}, e_{1}+\frac{b_{2}}{b_{1}} e_{2}, e_{3}$, and e_{4}. The matrix of σ_{1} becomes

$$
\psi_{\lambda}\left(\sigma_{1}\right)=\left(\begin{array}{cccc}
1 & 0 & t & 0 \\
0 & 1 & t & 0 \\
0 & 0 & -t & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Similarly, we determine the matrices of σ_{2} and δ. It is easy to see that the first column of the matrices of all generators is $(1,0,0,0,0)^{T}$, where T is the transpose. We thus reduce our representation to a 3-dimensional one by deleting the first row and the first column to get $\psi_{\lambda}^{\prime}: A\left(E_{3,1}\right) \rightarrow G L_{3}(\mathbb{C})$. The representation is defined as follows:

$$
\begin{aligned}
& \psi_{\lambda}^{\prime}\left(\sigma_{1}\right)=\left(\begin{array}{ccc}
1 & t & 0 \\
0 & -t & 0 \\
0 & 1 & 1
\end{array}\right), \\
& \psi_{\lambda}^{\prime}\left(\sigma_{2}\right)=\left(\begin{array}{ccc}
1 & 0 & \frac{t b_{2}}{b_{1}} \\
0 & 1 & t \\
0 & 0 & -t
\end{array}\right),
\end{aligned}
$$

and

$$
\psi_{\lambda}^{\prime}(\delta)=\left(\begin{array}{ccc}
1+\lambda_{1} b_{1}+\lambda_{2} b_{2} & \lambda_{1} d_{1}+\frac{b_{2}}{b_{1}} \lambda_{2} d_{1} & -t \lambda_{1}+\frac{-t b_{2}}{b_{1}} \lambda_{2} \\
b_{1} & 1+d_{1} & -t \\
0 & 0 & 1
\end{array}\right)
$$

We then diagonalize the matrix corresponding to $\psi_{\lambda}^{\prime}\left(\sigma_{1}\right)$ by an invertible matrix, say T, and conjugate the matrices of $\psi_{\lambda}^{\prime}\left(\sigma_{2}\right)$ and $\psi_{\lambda}^{\prime}(\delta)$ by the same matrix T. The invertible matrix T is given by

$$
T=\left(\begin{array}{ccc}
0 & 1 & t \\
0 & 0 & -1-t \\
1 & 0 & 1
\end{array}\right)
$$

In fact, a computation shows that

$$
T^{-1} \psi_{\lambda}^{\prime}\left(\sigma_{1}\right) T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -t
\end{array}\right)
$$

After conjugation, we get

$$
T^{-1} \psi_{\lambda}^{\prime}\left(\sigma_{2}\right) T=\left(\begin{array}{ccc}
\frac{-t^{2}}{1+t} & 0 & \frac{-\left(1+t+t^{2}\right)}{1+t} \\
\frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)} & 1 & \frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)} \\
\frac{-t}{1+t} & 0 & \frac{1}{1+t}
\end{array}\right)
$$

$T^{-1} \psi_{\lambda}^{\prime}(\delta) T=$
$\left(\begin{array}{ccc}\frac{1}{1+t} & \frac{b_{1}}{1+t} & \frac{t}{1+t} \\ -t\left(\lambda_{1}+\frac{b_{2} \lambda_{2}}{b_{1}}+\frac{t}{1+t}\right) & 1+\lambda_{2} b_{2}+b_{1}\left(\lambda_{1}+\frac{t}{1+t}\right) & \frac{\left(-t+b_{1} t-d_{1}(1+t)\right)\left[b_{2} \lambda_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right]}{b_{1}(1+t)} \\ \frac{t}{1+t} & \frac{b_{1}}{1+t} & \frac{1}{1+t}\end{array}\right)$.
The entries of the matrices $T^{-1} \psi_{\lambda}^{\prime}\left(\sigma_{2}\right) T$ and $T^{-1} \psi_{\lambda}^{\prime}(\delta) T$ are well-defined since we assume in our work that $t \neq-1$. For simplicity, we denote $T^{-1} \psi_{\lambda}^{\prime}\left(\sigma_{1}\right) T$ by $\psi_{\lambda}^{\prime}\left(\sigma_{1}\right), T^{-1} \psi_{\lambda}^{\prime}\left(\sigma_{2}\right) T$ by $\psi_{\lambda}^{\prime}\left(\sigma_{2}\right)$, and $T^{-1} \psi_{\lambda}^{\prime}(\delta) T$ by $\psi_{\lambda}^{\prime}(\delta)$.
We now prove some propositions to determine a sufficient condition for irreducibility of $\psi_{\lambda}^{\prime}: A\left(E_{3,1}\right) \rightarrow G L_{3}(\mathbb{C})$.
Proposition $2 t\left(b_{2}+b_{1} t+b_{2} t\right)+\left(1+t+t^{2}\right)\left(\lambda_{2} b_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right)=-(t+1)^{2}\left(t^{2}+1\right)$
Proof. The proof easily follows by considering the following relations:

- $t b_{2}=-t d_{1}-t(1+t)$
- $t b_{1}=(1+t) d_{1}+2 t$
- $\lambda_{1} b_{1}+\lambda_{2} b_{2}=-\left(1+t+d_{1}\right)$

Proposition 3 The two expressions $1+t+t^{2}$ and $b_{1} t+b_{2} t+b_{2}$ cannot be both equal to zeros.
Proof. We assume, for contradiction, that both are equal to zeros.
By substituting $t b_{2}=-t d_{1}-t(1+t)$ and $t b_{1}=(1+t) d_{1}+2 t \quad$ in $b_{1} t+b_{2} t+b_{2}=0$, we get $-t\left(1+t+t^{2}\right)=-t^{2}$. By assuming that $1+t+t^{2}=0$, we get that $t=0$, a contradiction.
Proposition $4-t+b_{1} t-d_{1}(1+t) \neq 0$.
Proof. Assume, for contradiction, that $-t+b_{1} t-d_{1}(1+t)=0$. Having that $b_{1} t=(1+t) d_{1}+2 t$, we get $-t+b_{1} t-d_{1}(1+t)=-t+(1+t) d_{1}+t+t-d_{1}(1+t)=t$. This implies that $t=0$, a contradiction.
We use Proposition 2, Proposition 3 and Proposition 4 to prove the following Lemma. We recall that all the indeterminates used in defining the representations are specialized to non zero complex numbers and, in addition, the complex number associated with t is not equal to -1 .

Lemma 5 If $t \neq \pm i$, then any non zero subspace S, which is invariant under the action of the representation $\psi_{\lambda}^{\prime}: A\left(E_{3,1}\right) \rightarrow G l_{3}(\mathbb{C})$ containing the standard unit vector e_{3}, must be the whole space \mathbb{C}^{3}.
Proof. We have that $\psi_{\lambda}^{\prime}\left(\sigma_{2}\right)\left(e_{3}\right)=\frac{-\left(1+t+t^{2}\right)}{1+t} e_{1}+\frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)} e_{2}+\frac{1}{1+t} e_{3} \in S$.
Since $e_{3} \in S$, it follows that $\frac{-\left(1+t+t^{2}\right)}{1+t} e_{1}+\frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)} e_{2} \in S$.
Moreover,
$\psi_{\lambda}^{\prime}(\delta)\left(e_{3}\right)=$
$\frac{-t+b_{1} t-d_{1}(1+t)}{1+t} e_{1}+\frac{\left(-t+b_{1} t-d_{1}(1+t)\right)\left[\lambda_{2} b_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right]}{b_{1}(1+t)} e_{2}+\frac{1+t+d_{1}(1+t)+t-b_{1} t}{1+t} e_{3} \in S$.
This also implies that

$$
\begin{equation*}
\frac{-t+b_{1} t-d_{1}(1+t)}{1+t} e_{1}+\frac{\left(-t+b_{1} t-d_{1}(1+t)\right)\left[\lambda_{2} b_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right]}{b_{1}(1+t)} e_{2} \in S \tag{2}
\end{equation*}
$$

Having proved that $1+t+t^{2}$ and $b_{1} t+b_{2} t+b_{2}$ can't both be zeros, we consider the following cases:
Case 1. $1+t+t^{2}=0$
By Proposition 3 and (1), we get that $e_{2} \in S$. By Proposition 4 and (2), we get that $e_{1} \in S$. Thus, S is the whole space.
Case 2. $1+t+t^{2} \neq 0$
Let us multiply (1) by $-t+b_{1} t-d_{1}(1+t)$ which is proved not to be zero in Proposition 4 . We also multiply (2) by $1+t+t^{2} \neq 0$. If we add the obtained equations, we get

$$
\begin{equation*}
\frac{-t+b_{1} t-d_{1}(1+t)}{b_{1}(1+t)}\left[t\left(b_{2}+b_{1} t+b_{2} t\right)+\left(1+t+t^{2}\right)\left(\lambda_{2} b_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right)\right] e_{2} \in S \tag{3}
\end{equation*}
$$

By Proposition 2, we have that $t\left(b_{2}+b_{1} t+b_{2} t\right)+\left(1+t+t^{2}\right)\left(\lambda_{2} b_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right)=-(t+1)^{2}\left(t^{2}+1\right)$. Assuming that $t \neq-1$ and $t \neq \pm i$, we get $\left[t\left(b_{2}+b_{1} t+b_{2} t\right)+\left(1+t+t^{2}\right)\left(\lambda_{2} b_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right) \neq 0\right.$.
By Proposition 4 and by (3), we get

$$
e_{2} \in S
$$

From (1) we conclude that

$$
e_{1} \in S
$$

Thus, S is the whole space \mathbb{C}^{3}.
Next, we present the following theorem which gives a sufficient condition for irreducibility of $\psi_{\lambda}^{\prime}: A\left(E_{3,1}\right) \rightarrow$ $G L_{3}(\mathbb{C})$.
Theorem 6 If $t \neq \pm i$, then the representation $\psi_{\lambda}^{\prime}: A\left(E_{3,1}\right) \rightarrow G L_{3}(\mathbb{C})$ is irreducible.
Proof. Let S be a non zero proper subspace of \mathbb{C}^{3}, which is invariant under the action of ψ_{λ}^{\prime}. By Lemma 5 , we have that $e_{3} \notin S$.
Then S is one of the following subspaces:

- $S=\left\langle e_{1}\right\rangle$
- $S=\left\langle e_{2}\right\rangle$
- $S=\left\langle e_{1}+u e_{2}\right\rangle$, where $u \in \mathbb{C}^{*}$
- $S=\left\langle e_{1}, e_{2}\right\rangle$

Case 1. $S=\left\langle e_{1}\right\rangle$. We have that $\psi_{\lambda}^{\prime}\left(\sigma_{2}\right)\left(e_{1}\right) \in S$. This implies that $\left(\begin{array}{c}\frac{-t^{2}}{1+t} \\ \frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)} \\ \frac{-t}{1+t}\end{array}\right) \in S$. This gives a contradiction because $t \neq 0$.

Case 2. $S=\left\langle e_{2}\right\rangle$. We have that $\psi_{\lambda}^{\prime}(\delta)\left(e_{2}\right) \in S$. This implies that $\left(\begin{array}{c}\frac{b_{1}}{1+t} \\ 1+\lambda_{2} b_{2}+b_{1}\left(\lambda_{1}+\frac{t}{1+t}\right) \\ \frac{b_{1}}{1+t}\end{array}\right) \in S$. This gives a contradiction since $b_{1} \neq 0$.

Case 3. $S=\left\langle e_{1}+u e_{2}\right\rangle, u \in \mathbb{C}^{*}$. We have that $\psi_{\lambda}^{\prime}\left(\sigma_{2}\right)\left(e_{1}+u e_{2}\right) \in S$. This implies that $\left(\begin{array}{c}\frac{-t^{2}}{1+t} \\ \frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)}+u \\ \frac{-t}{1+t}\end{array}\right) \in S$. This gives a contradiction since $t \neq 0$.
Case 4. $S=\left\langle e_{1}, e_{2}\right\rangle$.
We have that $\psi_{\lambda}^{\prime}\left(\sigma_{2}\right)\left(e_{1}\right) \in S$. This implies that $\left(\begin{array}{c}\frac{-t^{2}}{1+t} \\ \frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)} \\ \frac{-t}{1+t}\end{array}\right) \in S$. This gives a contradiction since $t \neq 0$.
Therefore, we conclude that the representation is irreducible because there is no proper non zero invariant subspace under the action of ψ_{λ}^{\prime}.
We now give a necessary condition for irreducibility.
Theorem 7 If $t= \pm i$, then the subspace $\left\langle e_{1}, e_{3}\right\rangle$ is a proper invariant subspace.
Proof.

1. $\psi_{\lambda}^{\prime}\left(\sigma_{1}\right)\left(e_{1}\right)=e_{1} \in S$.
2. $\psi_{\lambda}^{\prime}\left(\sigma_{2}\right)\left(e_{1}\right)=\left(\begin{array}{c}\frac{-t^{2}}{1+t} \\ \frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)} \\ \frac{-t}{1+t}\end{array}\right)=a e_{1}+b e_{3}$, where a and $b \in \mathbb{C}-\{0\}$.

Here, we have $a=\frac{-t^{2}}{1+t}, b=\frac{-t}{1+t}$, and $\frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)}=0$. This is true since $t^{2}=-1$.
3. $\psi_{\lambda}^{\prime}(\delta)\left(e_{1}\right)=\left(\begin{array}{c}\frac{1}{1+t} \\ -t\left(\lambda_{1}+\frac{b_{2} \lambda_{2}}{b_{1}}+\frac{t}{1+t}\right. \\ \frac{t}{1+t}\end{array}\right)=a e_{1}+b e_{3}$,
where a and b are given by $a=\frac{1}{1+t}$ and $b=\frac{t}{1+t}$.
4. $\psi_{\lambda}^{\prime}\left(\sigma_{1}\right)\left(e_{3}\right)=-t e_{3} \in S$.
5. $\psi_{\lambda}^{\prime}\left(\sigma_{2}\right)\left(e_{3}\right)=\left(\begin{array}{c}\frac{-\left(1+t+t^{2}\right.}{1+t} \\ \frac{t\left(b_{2}+b_{1} t+b_{2} t\right)}{b_{1}(1+t)} \\ \frac{1}{1+t}\end{array}\right)=a e_{1}+b e_{3}$,
where $a=\frac{-\left(1+t+t^{2}\right)}{1+t}$ and $b=\frac{1}{1+t}$.
6. $\psi_{\lambda}^{\prime}(\delta) e_{3}=\left(\begin{array}{c}\frac{t}{1+t} \\ \frac{\left(-t+b_{1} t-d_{1}(1+t)\right)\left(b_{2} \lambda_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right)}{b_{1}(1+t)} \\ \frac{1}{1+t}\end{array}\right)=a e_{1}+b e_{3}$,
where a and b are given by $a=\frac{t}{1+t}$ and $b=\frac{1}{1+t}$.
By Proposition 2, we have $\frac{\left(-t+b_{1} t-d_{1}(1+t)\right)\left(b_{2} \lambda_{2}(1+t)+b_{1}\left(\lambda_{1}+t+\lambda_{1} t\right)\right)}{b_{1}(1+t)}=0$.
Thus, we have determined a necessary and sufficient condition for irreducibility.
Theorem 8 Let $\lambda_{1}, \lambda_{2}, b_{1}, b_{2}, d_{1}, t \in \mathbb{C}-\{0\}$ and $t \neq-1$. The representation $\psi_{\lambda}^{\prime}: A\left(E_{3,1}\right) \rightarrow G L_{3}(\mathbb{C})$ is irreducible if and only if $t \neq \pm i$.

References

Birman, J. S. (1975). Braids, Links and Mapping Class Groups. Annals of Mathematical Studies. Princeton University Press, 82, New Jersey, ISBN: 0691081492

Brendle, T. E. (2002). The Torelli Group and Representations of Mapping Class Groups. Doctoral Thesis, Columbia University.
Perron, B. (1999). A linear representation of finite rank of the mapping class group of surfaces (preprint). Laboratoire de Topologie, 99 (204).

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

