On the Irreducibility of Artin's Group of Graphs

Malak M. Dally¹ & Mohammad N. Abdulrahim¹

¹ Department of Mathematics, Beirut Arab University, Beirut, Lebanon

Correspondence: Mohammad N. Abdulrahim, Department of Mathematics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon. E-mail: mna@bau.edu.lb

Received: March 12, 2015Accepted: March 30, 2015Online Published: May 1, 2015doi:10.5539/jmr.v7n2p117URL: http://dx.doi.org/10.5539/jmr.v7n2p117

Abstract

We consider the graph $E_{3,1}$ with three generators $\sigma_1, \sigma_2, \delta$, where σ_1 has an edge with each of σ_2 and δ . We then define the Artin group of the graph $E_{3,1}$ and consider its reduced Perron representation of degree three. After we specialize the indeterminates used in defining the representation to non-zero complex numbers, we obtain a necessary and sufficient condition that guarantees the irreducibility of the representation.

Keywords: Artin representation, braid group, Burau representation, graph, irreducibility

1. Introduction

To any undirected simple graph T, we introduce the Artin group, A, which is defined as an abstract group with vertices of Γ as its generators and two relations: xy = yx for vertices x and y that have no edge in common and xyx = yxy if the vertices x and y have a common edge.

Let A_n be the graph having *n* vertices σ_i 's $(1 \le i \le n)$ in which σ_i and σ_{i+1} share a comon edge, where i = 1, 2, ..., n - 1. We notice that the Artin group of A_n is the braid group on n + 1 strands. That is, $A(A_n) = B_{n+1}$ (J.S.Birman, 1975).

Having defined A_n , we consider $E_{n+1,p}$, which is the graph obtained from A_n by adding a vertex δ and an edge connecting σ_p and δ . Here $1 \le p \le n$. It is easy to see that the graph A_n embeds in the graph $E_{n+1,p}$. That is, $A(A_n) \subset A(E_{n+1,p})$. This induces an injection on B_{n+1} to $A(E_{n+1,p})$. In other words, a representation of $A(E_{n+1,p})$ yields a representation of B_{n+1} .

Knowing the reduced Burau representation of B_{n+1} of degree *n*, Perron extends such a representation to a representation of B_{n+1} of degree 2*n*. The representation obtained is referred to as Burau bis representation. Next, Perron constructs for each $\lambda = (\lambda_1, \ldots, \lambda_n)$ a representation $\psi_{\lambda} : A(E_{n+1,p}) \to GL_{2n}(Q(t, d_1, \ldots, d_n))$, where $t, d_1, \ldots, d_n \lambda_1, \ldots, \lambda_n$ are indeterminates. We specialize t, d_1, \ldots, d_n to non zero complex numbers, and we study this representation explicitly in the case n = 2 and p = 1. We then reduce the complex specialization of the representation ψ_{λ} to a representation of degree 3, namely $A(E_{3,1}) \to GL_3(\mathbb{C})$. A necessary and sufficient condition which guarantees its irreducibility is obtained in that case.

2. Burau bis Representation

Perron's strategy is to begin with the Burau representation of the braid group and extend it to a representation of $A(E_{n+1,p})$. He begins with the reduced Burau representation: $B_{n+1} \rightarrow GL_n(\mathbb{Z}[t, t^{-1}])$ defined as follows:

$$\sigma_i \to J_i = \begin{pmatrix} I_{i-2} & 0 & 0 \\ \hline & 1 & 0 & 0 \\ 0 & t & -t & 1 & 0 \\ \hline & 0 & 0 & 1 & \\ \hline 0 & 0 & 0 & I_{n-i-1} \end{pmatrix},$$

where I_k stands for the $k \times k$ identity matrix. Here, i = 2, ..., n - 1.

$$\sigma_1 \to J_1 = \begin{pmatrix} -t & 1 & 0 \\ 0 & 1 & 0 \\ \hline 0 & I_{n-2} \end{pmatrix}$$
$$\sigma_n \to J_n = \begin{pmatrix} I_{n-2} & 0 \\ 0 & 1 & 0 \\ 0 & t & -t \end{pmatrix}$$

Knowing that this representation is of degree *n*, Perron extends it to a representation of B_{n+1} of degree 2*n*. Let R_i denote an $n \times n$ block of zeros with a *t* placed in the (i, i) *th* position, and let I_n denote the $n \times n$ identity matrix. The obtained representation is referred to as the Burau bis representation. It is defined as follows:

$$\psi: B_{n+1} \to Gl_{2n}(\mathbb{Z}[t, t^{-1}])$$

$$\psi(\sigma_i) = \begin{pmatrix} I_n & 0 \\ R_i & J_i \end{pmatrix}, \quad 1 \le i \le n$$

For more details, see (T.E.Brendle, 2002, B.Perron, 1999).

3. Perron Representation

The Burau bis representation extends to $A(E_{n+1,p})$ for all possible values of *n* and *p* in the following way.

Let
$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
, $d = \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix}$, and $\lambda = (\lambda_1, \dots, \lambda_n)$.

We define the following $n \times n$ matrices:

$$A = (\lambda_1 b, \lambda_2 b, \dots, \lambda_n b)$$
$$B = (0, \dots, 0, b, 0, \dots, 0)$$
$$C = (\lambda_1 d, \lambda_2 d, \dots, \lambda_n d)$$
$$D = (0, \dots, 0, d, 0, \dots, 0),$$

where 0 denotes a column of n zeros.

For each i = 1, ..., n, we have that b_i satisfies the following conditions

$$tb_{i} = -td_{i-1} + (1+t)d_{i} - d_{i+1}, \quad i \neq p,$$

$$tb_{p} = -td_{p-1} + (1+t)d_{p} - d_{p+1} + t,$$

$$\sum_{i=1}^{n} \lambda_{i}b_{i} = -(1+d_{p}+t),$$

setting any undefined d_i equal zero.

For any choice $\lambda = (\lambda_1, ..., \lambda_n)$, we get a linear representation

$$\psi_{\lambda} : A(E_{n+1,p}) \to Gl_{2n}(R),$$

where R is the field of rational fractions in n+1 indeterminates $\mathbb{Q}(t, d_1, ..., d_n)$.

$$\psi_{\lambda}(\sigma_i) \rightarrow \begin{pmatrix} I_n & 0 \\ R_i & J_i \end{pmatrix},$$

$$\psi_{\lambda}(\delta) \to \begin{pmatrix} I_n + A & B \\ C & I_n + D \end{pmatrix}.$$

For more details, see (T.E.Brendle, 2002).

4. Reducibility of ψ_{λ} : $A(E_{3,1}) \rightarrow GL_4(\mathbb{C})$

Having defined Perron's representation, we set n = 2 and p = 1 to get the following vectors. $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, $d = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$, and $\lambda = (\lambda_1, \lambda_2)$.

We get the following 2×2 matrices $A = \begin{pmatrix} \lambda_1 b_1 & \lambda_2 b_1 \\ \lambda_1 b_2 & \lambda_2 b_2 \end{pmatrix}$, $B = \begin{pmatrix} b_1 & 0 \\ b_2 & 0 \end{pmatrix}$, $C = \begin{pmatrix} \lambda_1 d_1 & \lambda_2 d_1 \\ \lambda_1 d_2 & \lambda_2 d_2 \end{pmatrix}$, and $D = \begin{pmatrix} d_1 & 0 \\ d_2 & 0 \end{pmatrix}$.

Simple computations show that the parameters satisfy the following equations:

- $tb_2 = -td_1 + (1+t)d_2$
- $tb_1 = (1+t)d_1 d_2 + t$
- $\lambda_1 b_1 + \lambda_2 b_2 = -(1 + t + d_1)$

Having defined the 2 × 2 matrices A, B, C and D, we obtain the multiparameter representation $A(E_{3,1})$. This representation is of degree 4. We specialize the parameters $\lambda_1, \lambda_2, b_1, b_2, d_1, d_2, t$ to values in $\mathbb{C} - \{0\}$. We further assume that $t \neq -1$ and $d_2 = -t$. The representation $\psi_{\lambda} : A(E_{3,1}) \rightarrow GL_4(\mathbb{C})$ is defined as follows:

$$\psi_{\lambda}(\sigma_1) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ t & 0 & -t & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}(\sigma_2) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & t & t & -t \end{pmatrix}$$

and

$$\psi_{\lambda}(\delta) = \begin{pmatrix} 1 + \lambda_1 b_1 & \lambda_2 b_1 & b_1 & 0\\ \lambda_1 b_2 & \lambda_2 b_2 + 1 & b_2 & 0\\ \lambda_1 d_1 & \lambda_2 d_1 & 1 + d_1 & 0\\ -t\lambda_1 & -t\lambda_2 & -t & 1 \end{pmatrix}$$

The graph $E_{3,1}$ has 3 vertices σ_1, σ_2 and δ . Since p = 1, it follows that the vertex δ has a common edge with $\sigma_p = \sigma_1$. Therefore, the following relations are satisfied.

$$\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \quad (1)$$

$$\sigma_2 \delta = \delta \sigma_2 \tag{2}$$

$$\sigma_1 \delta \sigma_1 = \delta \sigma_1 \delta \tag{3}$$

We note that relation (1) is actually Artin's braid relation of the classical braid group, B_3 having σ_1 and σ_2 as standard generators. This assures that a representation of $A(E_{3,1})$ yields a representation of B_3 .

Lemma 1 *The representation* ψ_{λ} : $A(E_{3,1}) \rightarrow GL_4(\mathbb{C})$ *is reducible.*

Proof. For simplicity, we write σ_i instead of $\psi_{\lambda}(k)$, where k is a generator of $A(E_{3,1})$. The subspace $S = \langle e_1 + \frac{b_2}{b_1}e_2, e_3, e_4 \rangle$ is an invariant subspace of dimension 3. To see this:

1.
$$\sigma_1(e_1 + \frac{b_2}{b_1}e_2) = e_1 + \frac{b_2}{b_1}e_2 + te_3 \in S$$

2. $\sigma_2(e_1 + \frac{b_2}{b_1}e_2) = e_1 + \frac{b_2}{b_1}e_2 + t\frac{b_2}{b_1}e_3 \in S$
3. $\delta(e_1 + \frac{b_2}{b_1}e_2) = (1 + \lambda_1b_1 + \lambda_2b_2)e_1 + (\lambda_1b_2 + \frac{b_2}{b_1}(\lambda_2b_2 + 1))e_2 + (\lambda_1d_1 + \frac{b_2}{b_1}\lambda_2d_1)e_3 + (-t\lambda_1 + \frac{-tb_2}{b_1}\lambda_2)e_4$
 $= (1 + \lambda_1b_1 + \lambda_2b_2)(e_1 + \frac{b_2}{b_1}e_2) + (\lambda_1d_1 + \frac{b_2}{b_1}\lambda_2d_1)e_3 + (-t\lambda_1 + \frac{-tb_2}{b_1}\lambda_2)e_4 \in S$
4. $\sigma_1e_3 = -te_3 \in S$
5. $\sigma_2e_3 = e_3 + te_4 \in S$
6. $\delta e_3 = b_1(e_1 + \frac{b_2}{b_1}e_2) + (1 + d_1)e_3 - te_4 \in S$
7. $\sigma_1e_4 = e_3 + e_4 \in S$
8. $\sigma_2e_4 = -te_4 \in S$
9. $\delta e_4 = e_4 \in S$

5. On the Irreducibility of $\psi_{\lambda}':A(E_{3,1})\to GL_3(\mathbb{C})$

We consider the representation $\psi_{\lambda} : A(E_{3,1}) \to GL_4(\mathbb{C})$ restricted to the basis $e_1, e_1 + \frac{b_2}{b_1}e_2, e_3$, and e_4 . The matrix of σ_1 becomes

$$\psi_{\lambda}(\sigma_1) = \begin{pmatrix} 1 & 0 & t & 0 \\ 0 & 1 & t & 0 \\ 0 & 0 & -t & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Similarly, we determine the matrices of σ_2 and δ . It is easy to see that the first column of the matrices of all generators is $(1, 0, 0, 0, 0)^T$, where *T* is the transpose. We thus reduce our representation to a 3-dimensional one by deleting the first row and the first column to get $\psi'_{\lambda} : A(E_{3,1}) \to GL_3(\mathbb{C})$. The representation is defined as follows:

$$\begin{split} \psi_{\lambda}'(\sigma_1) &= \begin{pmatrix} 1 & t & 0 \\ 0 & -t & 0 \\ 0 & 1 & 1 \end{pmatrix}, \\ \psi_{\lambda}'(\sigma_2) &= \begin{pmatrix} 1 & 0 & \frac{tb_2}{b_1} \\ 0 & 1 & t \\ 0 & 0 & -t \end{pmatrix}, \end{split}$$

and

$$\psi_{\lambda}'(\delta) = \begin{pmatrix} 1 + \lambda_1 b_1 + \lambda_2 b_2 & \lambda_1 d_1 + \frac{b_2}{b_1} \lambda_2 d_1 & -t\lambda_1 + \frac{-tb_2}{b_1} \lambda_2 \\ \\ b_1 & 1 + d_1 & -t \\ 0 & 0 & 1 \end{pmatrix}.$$

We then diagonalize the matrix corresponding to $\psi'_{\lambda}(\sigma_1)$ by an invertible matrix, say *T*, and conjugate the matrices of $\psi'_{\lambda}(\sigma_2)$ and $\psi'_{\lambda}(\delta)$ by the same matrix *T*. The invertible matrix *T* is given by

$$T = \begin{pmatrix} 0 & 1 & t \\ 0 & 0 & -1 - t \\ 1 & 0 & 1 \end{pmatrix}.$$

In fact, a computation shows that

$$T^{-1}\psi'_{\lambda}(\sigma_1)T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -t \end{pmatrix}$$

After conjugation, we get

$$T^{-1}\psi_{\lambda}'(\sigma_{2})T = \begin{pmatrix} \frac{-t^{2}}{1+t} & 0 & \frac{-(1+t+t^{2})}{1+t} \\ \frac{t(b_{2}+b_{1}t+b_{2}t)}{b_{1}(1+t)} & 1 & \frac{t(b_{2}+b_{1}t+b_{2}t)}{b_{1}(1+t)} \\ \frac{-t}{1+t} & 0 & \frac{1}{1+t} \end{pmatrix},$$

The entries of the matrices $T^{-1}\psi'_{\lambda}(\sigma_2)T$ and $T^{-1}\psi'_{\lambda}(\delta)T$ are well-defined since we assume in our work that $t \neq -1$. For simplicity, we denote $T^{-1}\psi'_{\lambda}(\sigma_1)T$ by $\psi'_{\lambda}(\sigma_1)$, $T^{-1}\psi'_{\lambda}(\sigma_2)T$ by $\psi'_{\lambda}(\sigma_2)$, and $T^{-1}\psi'_{\lambda}(\delta)T$ by $\psi'_{\lambda}(\delta)$.

We now prove some propositions to determine a sufficient condition for irreducibility of $\psi'_{\lambda} : A(E_{3,1}) \rightarrow GL_3(\mathbb{C})$. **Proposition 2** $t(b_2 + b_1t + b_2t) + (1 + t + t^2)(\lambda_2b_2(1 + t) + b_1(\lambda_1 + t + \lambda_1t)) = -(t + 1)^2(t^2 + 1)$

Proof. The proof easily follows by considering the following relations:

- $tb_2 = -td_1 t(1+t)$
- $tb_1 = (1+t)d_1 + 2t$
- $\lambda_1 b_1 + \lambda_2 b_2 = -(1 + t + d_1)$

Proposition 3 The two expressions $1 + t + t^2$ and $b_1t + b_2t + b_2$ cannot be both equal to zeros.

Proof. We assume, for contradiction, that both are equal to zeros. By substituting $tb_2 = -td_1 - t(1+t)$ and $tb_1 = (1+t)d_1 + 2t$ in $b_1t + b_2t + b_2 = 0$, we get $-t(1+t+t^2) = -t^2$. By assuming that $1 + t + t^2 = 0$, we get that t = 0, a contradiction.

Proposition 4 $-t + b_1 t - d_1(1+t) \neq 0$.

Proof. Assume, for contradiction, that $-t + b_1t - d_1(1 + t) = 0$. Having that $b_1t = (1 + t)d_1 + 2t$, we get $-t + b_1t - d_1(1 + t) = -t + (1 + t)d_1 + t + t - d_1(1 + t) = t$. This implies that t = 0, a contradiction.

We use Proposition 2, Proposition 3 and Proposition 4 to prove the following Lemma. We recall that all the indeterminates used in defining the representations are specialized to non zero complex numbers and, in addition, the complex number associated with t is not equal to -1.

Lemma 5 If $t \neq \pm i$, then any non zero subspace S, which is invariant under the action of the representation $\psi'_{\lambda} : A(E_{3,1}) \rightarrow Gl_3(\mathbb{C})$ containing the standard unit vector e_3 , must be the whole space \mathbb{C}^3 .

Proof. We have that
$$\psi'_{\lambda}(\sigma_2)(e_3) = \frac{-(1+t+t^2)}{1+t}e_1 + \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)}e_2 + \frac{1}{1+t}e_3 \in S$$
.
Since $e_3 \in S$, it follows that $\frac{-(1+t+t^2)}{1+t}e_1 + \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)}e_2 \in S$. (1)

Moreover,

$$\psi_{\lambda}'(\delta)(e_3) = \frac{-t+b_1t-d_1(1+t)}{1+t}e_1 + \frac{(-t+b_1t-d_1(1+t))[\lambda_2b_2(1+t)+b_1(\lambda_1+t+\lambda_1t)]}{b_1(1+t)}e_2 + \frac{1+t+d_1(1+t)+t-b_1t}{1+t}e_3 \in S$$

This also implies that

$$\frac{-t+b_1t-d_1(1+t)}{1+t}e_1 + \frac{(-t+b_1t-d_1(1+t))[\lambda_2b_2(1+t)+b_1(\lambda_1+t+\lambda_1t)]}{b_1(1+t)}e_2 \in S.$$
(2)

Having proved that $1 + t + t^2$ and $b_1t + b_2t + b_2$ can't both be zeros, we consider the following cases:

Case 1.
$$1 + t + t^2 = 0$$

By Proposition 3 and (1), we get that $e_2 \in S$. By Proposition 4 and (2), we get that $e_1 \in S$. Thus, S is the whole space.

Case 2.
$$1 + t + t^2 \neq 0$$

Let us multiply (1) by $-t + b_1t - d_1(1 + t)$ which is proved not to be zero in Proposition 4. We also multiply (2) by $1 + t + t^2 \neq 0$. If we add the obtained equations, we get

$$\frac{-t+b_1t-d_1(1+t)}{b_1(1+t)}[t(b_2+b_1t+b_2t)+(1+t+t^2)(\lambda_2b_2(1+t)+b_1(\lambda_1+t+\lambda_1t))]e_2 \in S.$$
(3)

By Proposition 2, we have that $t(b_2 + b_1t + b_2t) + (1 + t + t^2)(\lambda_2b_2(1 + t) + b_1(\lambda_1 + t + \lambda_1t)) = -(t + 1)^2(t^2 + 1)$. Assuming that $t \neq -1$ and $t \neq \pm i$, we get $[t(b_2 + b_1t + b_2t) + (1 + t + t^2)(\lambda_2b_2(1 + t) + b_1(\lambda_1 + t + \lambda_1t)) \neq 0$.

 $e_2 \in S$.

By Proposition 4 and by (3), we get

From (1) we conclude that

 $e_1 \in S$.

Thus, S is the whole space \mathbb{C}^3 .

Next, we present the following theorem which gives a sufficient condition for irreducibility of $\psi'_{\lambda} : A(E_{3,1}) \to GL_3(\mathbb{C})$.

Theorem 6 If $t \neq \pm i$, then the representation $\psi'_{\lambda} : A(E_{3,1}) \to GL_3(\mathbb{C})$ is irreducible.

Proof. Let S be a non zero proper subspace of \mathbb{C}^3 , which is invariant under the action of ψ'_{λ} . By Lemma 5, we have that $e_3 \notin S$.

Then S is one of the following subspaces:

• $S = \langle e_1 \rangle$

•
$$S = \langle e_2 \rangle$$

- $S = \langle e_1 + u e_2 \rangle$, where $u \in \mathbb{C}^*$
- $S = \langle e_1, e_2 \rangle$

Case 1. $S = \langle e_1 \rangle$. We have that $\psi'_{\lambda}(\sigma_2)(e_1) \in S$. This implies that $\begin{pmatrix} \frac{-t^2}{1+t} \\ \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} \\ \frac{-t}{1+t} \end{pmatrix} \in S$. This gives a contradiction because $t \neq 0$.

122

Case 2.
$$S = \langle e_2 \rangle$$
. We have that $\psi'_{\lambda}(\delta)(e_2) \in S$. This implies that $\begin{pmatrix} \frac{b_1}{1+t} \\ 1 + \lambda_2 b_2 + b_1(\lambda_1 + \frac{t}{1+t}) \\ \frac{b_1}{1+t} \end{pmatrix} \in S$. This gives a

contradiction since $b_1 \neq 0$.

Case 3. $S = \langle e_1 + ue_2 \rangle$, $u \in \mathbb{C}^*$. We have that $\psi'_{\lambda}(\sigma_2)(e_1 + ue_2) \in S$. This implies that $\begin{pmatrix} \frac{-t^2}{1+t} \\ \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} + u \\ \frac{-t}{1+t} \end{pmatrix} \in S$. This

gives a contradiction since $t \neq 0$.

Case 4.
$$S = \langle e_1, e_2 \rangle$$
.
We have that $\psi'_{\lambda}(\sigma_2)(e_1) \in S$. This implies that $\begin{pmatrix} \frac{-t^2}{1+t} \\ \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} \\ \frac{-t}{1+t} \end{pmatrix} \in S$. This gives a contradiction since $t \neq 0$.

Therefore, we conclude that the representation is irreducible because there is no proper non zero invariant subspace under the action of ψ'_{λ} .

We now give a necessary condition for irreducibility.

Theorem 7 If $t = \pm i$, then the subspace $\langle e_1, e_3 \rangle$ is a proper invariant subspace. *Proof.*

1.
$$\psi'_{\lambda}(\sigma_1)(e_1) = e_1 \in S$$
.

2.
$$\psi'_{\lambda}(\sigma_2)(e_1) = \begin{pmatrix} \frac{-t^2}{1+t} \\ \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} \\ \frac{-t}{1+t} \end{pmatrix} = ae_1 + be_3$$
, where *a* and $b \in \mathbb{C} - \{0\}$.

Here, we have $a = \frac{-t^2}{1+t}$, $b = \frac{-t}{1+t}$, and $\frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} = 0$. This is true since $t^2 = -1$.

3.
$$\psi'_{\lambda}(\delta)(e_1) = \begin{pmatrix} \frac{1}{1+t} \\ -t(\lambda_1 + \frac{b_2\lambda_2}{b_1} + \frac{t}{1+t} \\ \frac{t}{1+t} \end{pmatrix} = ae_1 + be_3$$
,

where *a* and *b* are given by $a = \frac{1}{1+t}$ and $b = \frac{t}{1+t}$.

4.
$$\psi'_{\lambda}(\sigma_1)(e_3) = -te_3 \in S$$
.

5.
$$\psi'_{\lambda}(\sigma_2)(e_3) = \begin{pmatrix} \frac{-(1+t+t^2)}{1+t} \\ \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} \\ \frac{1}{1+t} \end{pmatrix} = ae_1 + be_3,$$

where $a = \frac{-(1+t+t^2)}{1+t}$ and $b = \frac{1}{1+t}$.

6.
$$\psi_{\lambda}'(\delta)e_3 = \begin{pmatrix} \frac{t}{1+t} \\ \frac{(-t+b_1t-d_1(1+t))(b_2\lambda_2(1+t)+b_1(\lambda_1+t+\lambda_1t))}{b_1(1+t)} \\ \frac{1}{1+t} \end{pmatrix} = ae_1 + be_3,$$

where *a* and *b* are given by $a = \frac{t}{1+t}$ and $b = \frac{1}{1+t}$.

By Proposition 2, we have $\frac{(-t+b_1t-d_1(1+t))(b_2\lambda_2(1+t)+b_1(\lambda_1+t+\lambda_1t))}{b_1(1+t)} = 0.$

Thus, we have determined a necessary and sufficient condition for irreducibility.

Theorem 8 Let $\lambda_1, \lambda_2, b_1, b_2, d_1, t \in \mathbb{C} - \{0\}$ and $t \neq -1$. The representation $\psi'_{\lambda} : A(E_{3,1}) \rightarrow GL_3(\mathbb{C})$ is irreducible if and only if $t \neq \pm i$.

References

- Birman, J. S. (1975). *Braids, Links and Mapping Class Groups*. Annals of Mathematical Studies. Princeton University Press, 82, New Jersey, ISBN: 0691081492
- Brendle, T. E. (2002). *The Torelli Group and Representations of Mapping Class Groups*. Doctoral Thesis, Columbia University.
- Perron, B. (1999). A linear representation of finite rank of the mapping class group of surfaces (preprint). Laboratoire de Topologie, 99 (204).

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).