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Abstract

We consider the graph E3,1 with three generators σ1, σ2, δ, where σ1 has an edge with each of σ2 and δ. We
then define the Artin group of the graph E3,1 and consider its reduced Perron representation of degree three. After
we specialize the indeterminates used in defining the representation to non-zero complex numbers, we obtain a
necessary and sufficient condition that guarantees the irreducibility of the representation.
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1. Introduction

To any undirected simple graph T , we introduce the Artin group, A, which is defined as an abstract group with
vertices of Γ as its generators and two relations: xy = yx for vertices x and y that have no edge in common and
xyx = yxy if the vertices x and y have a common edge.

Let An be the graph having n vertices σi’s (1 ≤ i ≤ n ) in which σi and σi+1 share a comon edge, where
i = 1, 2, ..., n − 1. We notice that the Artin group of An is the braid group on n + 1 strands. That is, A(An) = Bn+1
(J.S.Birman, 1975).

Having defined An, we consider En+1,p, which is the graph obtained from An by adding a vertex δ and an edge
connecting σp and δ. Here 1 ≤ p ≤ n. It is easy to see that the graph An embeds in the graph En+1,p. That is,
A(An) ⊂ A(En+1,p). This induces an injection on Bn+1 to A(En+1,p). In other words, a representation of A(En+1,p)
yields a representation of Bn+1.

Knowing the reduced Burau representation of Bn+1 of degree n, Perron extends such a representation to a rep-
resentation of Bn+1 of degree 2n. The representation obtained is referred to as Burau bis representation. Next,
Perron constructs for each λ = (λ1, . . . , λn) a representation ψλ : A(En+1,p) → GL2n(Q(t, d1, . . . , dn)), where
t, d1, . . . , dn λ1, . . . , λn are indeterminates. We specialize t, d1, . . . , dn to non zero complex numbers, and we study
this representation explicitly in the case n = 2 and p = 1. We then reduce the complex specialization of the rep-
resentation ψλ to a representation of degree 3, namely A(E3,1) → GL3(C). A necessary and sufficient condition
which guarantees its irreducibility is obtained in that case.

2. Burau bis Representation

Perron’s strategy is to begin with the Burau representation of the braid group and extend it to a representation of
A(En+1,p). He begins with the reduced Burau representation: Bn+1 → GLn(Z[t, t−1]) defined as follows:

σi → Ji =


Ii−2 0 0

0
1 0 0
t −t 1
0 0 1

0

0 0 In−i−1

 ,
where Ik stands for the k × k identity matrix. Here, i = 2, . . . , n − 1.
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σ1 → J1 =

 −t 1
0 1 0

0 In−2


σn → Jn =

 In−2 0

0
1 0
t −t


Knowing that this representation is of degree n, Perron extends it to a representation of Bn+1 of degree 2n. Let Ri

denote an n × n block of zeros with a t placed in the (i, i) th position, and let In denote the n × n identity matrix.
The obtained representation is referred to as the Burau bis representation. It is defined as follows:

ψ : Bn+1 → Gl2n(Z[t, t−1])

ψ(σi) =
(
In 0
Ri Ji

)
, 1 ≤ i ≤ n

For more details, see (T.E.Brendle, 2002, B.Perron, 1999).

3. Perron Representation

The Burau bis representation extends to A(En+1,p) for all possible values of n and p in the following way.

Let b =


b1
...

bn

 , d =


d1
...

dn

 , and λ = (λ1, . . . , λn).

We define the following n × n matrices:

A = (λ1b, λ2b, . . . , λnb)

B = (0, . . . , 0, b, 0, . . . , 0)

C = (λ1d, λ2d, . . . , λnd)

D = (0, . . . , 0, d, 0, . . . , 0),

where 0 denotes a column of n zeros.

For each i = 1, . . . , n, we have that bi satisfies the following conditions

tbi = −tdi−1 + (1 + t)di − di+1, i , p,

tbp = −tdp−1 + (1 + t)dp − dp+1 + t,
n∑

i=1

λibi = −(1 + dp + t),

setting any undefined d j equal zero.

For any choice λ = (λ1, . . . , λn) , we get a linear representation

ψλ : A(En+1,p)→ Gl2n(R),

where R is the field of rational fractions in n+1 indeterminates Q(t, d1, ..., dn).

ψλ(σi)→
(
In 0
Ri Ji

)
,
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ψλ(δ)→
(
In + A B

C In + D

)
.

For more details, see (T.E.Brendle, 2002).

4. Reducibility of ψλ : A(E3,1) → GL4(C)

Having defined Perron’s representation, we set n = 2 and p = 1 to get the following vectors. b =
(
b1
b2

)
, d =

(
d1
d2

)
,

and λ = (λ1, λ2).

We get the following 2 × 2 matrices A =
(
λ1b1 λ2b1
λ1b2 λ2b2

)
, B =

(
b1 0
b2 0

)
, C =

(
λ1d1 λ2d1
λ1d2 λ2d2

)
, and D =(

d1 0
d2 0

)
.

Simple computations show that the parameters satisfy the following equations:

• tb2 = −td1 + (1 + t)d2

• tb1 = (1 + t)d1 − d2 + t

• λ1b1 + λ2b2 = −(1 + t + d1)

Having defined the 2 × 2 matrices A, B, C and D, we obtain the multiparameter representation A(E3,1). This
representation is of degree 4. We specialize the parameters λ1, λ2, b1, b2, d1, d2, t to values in C − {0}. We further
assume that t , −1 and d2 = −t. The representation ψλ : A(E3,1)→ GL4(C) is defined as follows:

ψλ(σ1) =


1 0 0 0
0 1 0 0
t 0 −t 1
0 0 0 1

 ,

ψλ(σ2) =


1 0 0 0
0 1 0 0
0 0 1 0
0 t t −t

 ,

and

ψλ(δ) =


1 + λ1b1 λ2b1 b1 0
λ1b2 λ2b2 + 1 b2 0
λ1d1 λ2d1 1 + d1 0
−tλ1 −tλ2 −t 1

 .
The graph E3,1 has 3 vertices σ1, σ2 and δ. Since p = 1, it follows that the vertex δ has a common edge with
σp = σ1. Therefore, the following relations are satisfied.

σ1σ2σ1 = σ2σ1σ2 (1)

σ2δ = δσ2 (2)

σ1δσ1 = δσ1δ (3)
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We note that relation (1) is actually Artin’s braid relation of the classical braid group, B3 having σ1 and σ2 as
standard generators. This assures that a representation of A(E3,1)yields a representation of B3.

Lemma 1 The representation ψλ : A(E3,1)→ GL4(C) is reducible.

Proof. For simplicity, we write σi instead of ψλ(k) , where k is a generator of A(E3,1).The subspace S =⟨
e1 +

b2
b1

e2, e3, e4

⟩
is an invariant subspace of dimension 3. To see this:

1. σ1(e1 +
b2
b1

e2) = e1 +
b2
b1

e2 + te3 ∈ S

2. σ2(e1 +
b2
b1

e2) = e1 +
b2
b1

e2 + t b2
b1

e3 ∈ S

3. δ(e1 +
b2
b1

e2) = (1 + λ1b1 + λ2b2)e1 + (λ1b2 +
b2
b1

(λ2b2 + 1))e2+

(λ1d1 +
b2
b1
λ2d1)e3 + (−tλ1 +

−tb2
b1
λ2)e4

= (1 + λ1b1 + λ2b2)(e1 +
b2
b1

e2) + (λ1d1 +
b2
b1
λ2d1)e3+

(−tλ1 +
−tb2
b1
λ2)e4 ∈ S

4. σ1e3 = −te3 ∈ S

5. σ2e3 = e3 + te4 ∈ S

6. δe3 = b1(e1 +
b2
b1

e2) + (1 + d1)e3 − te4 ∈ S

7. σ1e4 = e3 + e4 ∈ S

8. σ2e4 = −te4 ∈ S

9. δe4 = e4 ∈ S

5. On the Irreducibility of ψ′
λ

: A(E3,1) → GL3(C)

We consider the representation ψλ : A(E3,1) → GL4(C) restricted to the basis e1, e1 +
b2
b1

e2, e3, and e4. The matrix
of σ1 becomes

ψλ(σ1) =


1 0 t 0
0 1 t 0
0 0 −t 0
0 0 1 1

 .
Similarly, we determine the matrices of σ2 and δ. It is easy to see that the first column of the matrices of all
generators is (1, 0, 0, 0, 0)T , where T is the transpose. We thus reduce our representation to a 3-dimensional one by
deleting the first row and the first column to get ψ′λ : A(E3,1)→ GL3(C). The representation is defined as follows:

ψ′λ(σ1) =

1 t 0
0 −t 0
0 1 1

 ,

ψ′λ(σ2) =

1 0 tb2
b1

0 1 t
0 0 −t

 ,
and

ψ′λ(δ) =


1 + λ1b1 + λ2b2 λ1d1 +

b2
b1
λ2d1 −tλ1 +

−tb2
b1
λ2

b1 1 + d1 −t
0 0 1

 .
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We then diagonalize the matrix corresponding to ψ′λ(σ1) by an invertible matrix, say T , and conjugate the matrices
of ψ′λ(σ2) and ψ′λ(δ) by the same matrix T . The invertible matrix T is given by

T =

0 1 t
0 0 −1 − t
1 0 1

 .
In fact, a computation shows that

T−1ψ′λ(σ1)T =

1 0 0
0 1 0
0 0 −t

 .
After conjugation, we get

T−1ψ′λ(σ2)T =



−t2

1+t 0 −(1+t+t2)
1+t

t(b2+b1t+b2t)
b1(1+t) 1 t(b2+b1t+b2t)

b1(1+t)

−t
1+t 0 1

1+t


,

T−1ψ′λ(δ)T =

1
1+t

b1
1+t

t
1+t

−t(λ1 +
b2λ2
b1
+ t

1+t ) 1 + λ2b2 + b1(λ1 +
t

1+t )
(−t+b1t−d1(1+t))[b2λ2(1+t)+b1(λ1+t+λ1t)]

b1(1+t)

t
1+t

b1
1+t

1
1+t


.

The entries of the matrices T−1ψ′λ(σ2)T and T−1ψ′λ(δ)T are well-defined since we assume in our work that t , −1.
For simplicity, we denote T−1ψ′λ(σ1)T by ψ′λ(σ1), T−1ψ′λ(σ2)T by ψ′λ(σ2), and T−1ψ′λ(δ)T by ψ′λ(δ).

We now prove some propositions to determine a sufficient condition for irreducibility of ψ′λ : A(E3,1)→ GL3(C).

Proposition 2 t(b2 + b1t + b2t) + (1 + t + t2)(λ2b2(1 + t) + b1(λ1 + t + λ1t)) = −(t + 1)2(t2 + 1)

Proof. The proof easily follows by considering the following relations:

• tb2 = −td1 − t(1 + t)

• tb1 = (1 + t)d1 + 2t

• λ1b1 + λ2b2 = −(1 + t + d1)

Proposition 3 The two expressions 1 + t + t2 and b1t + b2t + b2 cannot be both equal to zeros.

Proof. We assume, for contradiction, that both are equal to zeros.
By substituting tb2 = −td1− t(1+ t) and tb1 = (1+ t)d1+2t in b1t+b2t+b2 = 0, we get −t(1+ t+ t2) = −t2.
By assuming that 1 + t + t2 = 0, we get that t = 0, a contradiction.

Proposition 4 −t + b1t − d1(1 + t) , 0.

Proof. Assume, for contradiction, that −t + b1t − d1(1 + t) = 0. Having that b1t = (1 + t)d1 + 2t, we get
−t + b1t − d1(1 + t) = −t + (1 + t)d1 + t + t − d1(1 + t) = t. This implies that t = 0, a contradiction.

We use Proposition 2, Proposition 3 and Proposition 4 to prove the following Lemma. We recall that all the
indeterminates used in defining the representations are specialized to non zero complex numbers and, in addition,
the complex number associated with t is not equal to −1.
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Lemma 5 If t , ±i, then any non zero subspace S , which is invariant under the action of the representation
ψ′λ : A(E3,1)→ Gl3(C) containing the standard unit vector e3, must be the whole space C3.

Proof. We have that ψ′λ(σ2)(e3) = −(1+t+t2)
1+t e1 +

t(b2+b1t+b2t)
b1(1+t) e2 +

1
1+t e3 ∈ S .

Since e3 ∈ S , it follows that −(1+t+t2)
1+t e1 +

t(b2+b1t+b2t)
b1(1+t) e2 ∈ S . (1)

Moreover,

ψ′λ(δ)(e3) =
−t+b1t−d1(1+t)

1+t e1 +
(−t+b1t−d1(1+t))[λ2b2(1+t)+b1(λ1+t+λ1t)]

b1(1+t) e2 +
1+t+d1(1+t)+t−b1t

1+t e3 ∈ S .

This also implies that

−t + b1t − d1(1 + t)
1 + t

e1 +
(−t + b1t − d1(1 + t))[λ2b2(1 + t) + b1(λ1 + t + λ1t)]

b1(1 + t)
e2 ∈ S . (2)

Having proved that 1 + t + t2 and b1t + b2t + b2 can’t both be zeros, we consider the following cases:

Case 1. 1 + t + t2 = 0

By Proposition 3 and (1), we get that e2 ∈ S . By Proposition 4 and (2), we get that e1 ∈ S . Thus, S is the whole
space.

Case 2. 1 + t + t2 , 0

Let us multiply (1) by −t + b1t − d1(1 + t) which is proved not to be zero in Proposition 4. We also multiply (2) by
1 + t + t2 , 0. If we add the obtained equations, we get

−t + b1t − d1(1 + t)
b1(1 + t)

[t(b2 + b1t + b2t) + (1 + t + t2)(λ2b2(1 + t) + b1(λ1 + t + λ1t))]e2 ∈ S . (3)

By Proposition 2, we have that t(b2 + b1t + b2t) + (1 + t + t2)(λ2b2(1 + t) + b1(λ1 + t + λ1t)) = −(t + 1)2(t2 + 1).
Assuming that t , −1 and t , ±i, we get [t(b2 + b1t + b2t) + (1 + t + t2)(λ2b2(1 + t) + b1(λ1 + t + λ1t)) , 0.

By Proposition 4 and by (3), we get
e2 ∈ S .

From (1) we conclude that
e1 ∈ S .

Thus, S is the whole space C3.

Next, we present the following theorem which gives a sufficient condition for irreducibility of ψ′λ : A(E3,1) →
GL3(C).

Theorem 6 If t , ±i, then the representation ψ′λ : A(E3,1)→ GL3(C) is irreducible.

Proof. Let S be a non zero proper subspace of C3, which is invariant under the action of ψ′λ. By Lemma 5, we
have that e3 < S .

Then S is one of the following subspaces:

• S = ⟨e1⟩

• S = ⟨e2⟩

• S = ⟨e1 + ue2⟩, where u ∈ C∗

• S = ⟨e1, e2⟩

Case 1. S = ⟨e1⟩. We have that ψ′λ(σ2)(e1) ∈ S . This implies that



−t2

1+t

t(b2+b1t+b2t)
b1(1+t)

−t
1+t


∈ S . This gives a contradiction

because t , 0.
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Case 2. S = ⟨e2⟩. We have that ψ′λ(δ)(e2) ∈ S . This implies that


b1

1+t

1 + λ2b2 + b1(λ1 +
t

1+t )

b1
1+t

 ∈ S . This gives a

contradiction since b1 , 0.

Case 3. S = ⟨e1 + ue2⟩, u ∈ C∗. We have that ψ′λ(σ2)(e1 + ue2) ∈ S . This implies that



−t2

1+t

t(b2+b1t+b2t)
b1(1+t) + u

−t
1+t


∈ S . This

gives a contradiction since t , 0.

Case 4. S = ⟨e1, e2⟩.

We have that ψ′λ(σ2)(e1) ∈ S . This implies that



−t2

1+t

t(b2+b1t+b2t)
b1(1+t)

−t
1+t


∈ S . This gives a contradiction since t , 0.

Therefore, we conclude that the representation is irreducible because there is no proper non zero invariant subspace
under the action of ψ′λ.

We now give a necessary condition for irreducibility.

Theorem 7 If t = ±i, then the subspace ⟨e1, e3⟩ is a proper invariant subspace.

Proof.

1. ψ′λ(σ1)(e1) = e1 ∈ S .

2. ψ′λ(σ2)(e1) =



−t2

1+t

t(b2+b1t+b2t)
b1(1+t)

−t
1+t


= ae1 + be3, where a and b ∈ C − {0}.

Here, we have a = −t2

1+t , b = −t
1+t , and t(b2+b1t+b2t)

b1(1+t) = 0. This is true since t2 = −1.

3. ψ′λ(δ)(e1) =


1

1+t

−t(λ1 +
b2λ2
b1
+ t

1+t

t
1+t

 = ae1 + be3 ,

where a and b are given by a = 1
1+t and b = t

1+t .

4. ψ′λ(σ1)(e3) = −te3 ∈ S .

5. ψ′λ(σ2)(e3) =



−(1+t+t2

1+t

t(b2+b1t+b2t)
b1(1+t)

1
1+t


= ae1 + be3,
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where a = −(1+t+t2)
1+t and b = 1

1+t .

6. ψ′λ(δ)e3 =



t
1+t

(−t+b1t−d1(1+t))(b2λ2(1+t)+b1(λ1+t+λ1t))
b1(1+t)

1
1+t

 = ae1 + be3,

where a and b are given by a = t
1+t and b = 1

1+t .

By Proposition 2, we have (−t+b1t−d1(1+t))(b2λ2(1+t)+b1(λ1+t+λ1t))
b1(1+t) = 0.

Thus, we have determined a necessary and sufficient condition for irreducibility.

Theorem 8 Let λ1, λ2, b1, b2, d1, t ∈ C − {0} and t , −1. The representation ψ′λ : A(E3,1) → GL3(C) is irreducible
if and only if t , ±i.
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