Generalized Quasilinearization versus Newton's Method for Convex-Concave Functions
- Cesar Martinez-Garza
Abstract
In this paper we use the Method of Generalized Quasilinearization to obtain monotone Newton-like comparative schemes to solve the equation F(x)=0, where F(x) Î C[W,R]. Here, F(x) admits the decomposition F(x)=f(x)+g(x), where f(x) and g(x) are convex and concave functions in W, respectively. The monotone sequences of iterates are shown to converge quadratically. Four cases are explored in this manuscript.
- Full Text: PDF
- DOI:10.5539/jmr.v2n3p63
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org