Fit States on Girard Algebras
- Remigijus Gylys
Abstract
Recently Weber proposed to define ``weakly additive" states on a Girard algebra by the additivity only on its sub-$MV$-algebras and characterized such states on the canonical Girard algebra extensions of any finite $MV$-chain. In the present paper, we take another viewpoint: the arguable sub-$MV$-algebras are replaced by suitable substructures coming from author, H\"{o}hle and Weber's own previous investigations. We propose a new notion of \emph{fit} states on a Girard algebra by the additivity on the mentioned substructures and consider such states on the ``non-effectible" Girard algebra ``$n$-extensions" (= canonical extensions when $n=1$) of $MV$-chains restricting ourselves to ones having less than six nontrivial elements. Our fit states appear as solutions of certain inconsistent systems of linear equations. They have extensive enough domains of the additivity-in any comparable case more extensive than Weber's states have.- Full Text: PDF
- DOI:10.5539/jmr.v6n4p29
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org