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Abstract

Recently Weber proposed to define “weakly additive” states on a Girard algebra by the additivity only on its sub-
MV-algebras and characterized such states on the canonical Girard algebra extensions of any finite MV-chain. In
the present paper, we take another viewpoint: the arguable sub-MV-algebras are replaced by suitable substructures
coming from author, Hohle and Weber’s own previous investigations. We propose a new notion of fif states on a
Girard algebra by the additivity on the mentioned substructures and consider such states on the “non-effectible”
Girard algebra “n-extensions” (= canonical extensions when n = 1) of MV-chains restricting ourselves to ones
having less than six nontrivial elements. Our fit states appear as solutions of certain inconsistent systems of linear
equations. They have extensive enough domains of the additivity-in any comparable case more extensive than
Weber’s states have.

Keywords: MV-algebra, Weber MV-chain, Girard algebra, effectible Girard algebra, canonical extension, n-
extension, steady product, deflected product, state, fit state, Weber state

1. Introduction

Hohle and Weber (1997) proposed the following notion of an additivity of a state on a Girard algebra (Q; @, ,—)
(with the dual multiplication g viewed as an addition and its dual residual ,—): an isotonic map st: Q — [0, 1]
satisfying boundary conditions is additive whenever

@,pr =y and @pr = x = st(xpy) = st(x) + st(y), @))
X Y

where the antecedent of the implication hints at a possible new concept of disjointness in Q (reducing to the usual
one in MV-algebras).

Let us remember what happened to this additivity in such a delicate situation when the authors themselves keep this
notion in the mind unwillingly. Weber (2010) proved the uniqueness of an additive state on a finite non-Boolean
MYV-chain, say ‘W,,, having m — 1 (with m > 2) non-trivial elements and proceeded to extend this state from W,
to its “canonical” non-MV-Girard algebra extension, say W', The latter is defined as the set of all pairs (a, b)
of elements a, b of ‘W, with a < b equipped with a certain Girard algebra structure. Unfortunately, he proved the
non-existence of additive state extensions on ’W,ﬁ/ " if m exceeds the number 3. In this unwelcome situation Weber
decided that the condition used in (1) is too strong and looked for a weaker notion of an additivity. He proposed
to define “weakly additive” states on a Girard algebra by the additivity only on its sub-MV-algebras. Then the
condition used in (1) reduces to the usual property of the disjointness in MV-algebras. Worse, then the implied
original idea of disjointness in Girard algebras has no longer meaning.

Meanwhile, Gylys (2010) used the antecedent of the implication (1) as a foundation of the following partial multi-
plicativity in a Girard algebra (Q; p, ,—) (with p viewed as a multiplication): a partial product xgy is defined in Q
and is equal to xpy whenever the condition used in (1) is satisfied. Then he proposed the concept of effectible Gi-
rard algebras whose important characteristic consists in preserving the associativity when restricting their (total)
multiplications to partial ones, which in contrast to the original multiplications become cancellative-consequently,
we arrive at effect algebras. But we know from the theory of these algebras (see book by Dvurecenskij & Pul-
manova, 2000) that there is a well-defined concept of a state on them. Adapting this notion to a new circumstance
we come to the following definition: a state on an effectible Girard algebra (Q; ¢, ,—, T) (with T the top element
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of Q) is a mapping st: Q — [0, 1] such that s#(T) = 1, and st(xpy) = st(x) + st(y), whenever the partial product
xgy is defined in Q-it is nothing but the additive state in the sense of (1). It appeared that all MV-algebras are
effectible and that principal non-trivial examples of effectible non-M V-Girard algebras are only mentioned canon-
ical extensions (Wév " and "Wév ' of MV-algebras ‘W, and ‘W3, respectively. Gylys (2012) made an attempt to find
more examples of effectible Girard algebras. For this reason, he was looking for finite and infinite families of
elements of ‘W, instead of working with their traditional pairs. But the sight was really pitiful-he short-listed only
the canonical extensions ’Wév ' (Wév !, and 2-extensions ’W;Vz, ’W;VZ of MV-chains W, and ‘W, respectively. Ad-
ditionally, an n-extension of “W,, is the set of all the ordered (n+ 1)-tuples {ay, ay, . . . , a,) of elements ay, a, . .., a,
of W,, witha > a; > ... > a, equipped with a certain Girard algebra structure. When building extensions, say
§, of the unique states on ‘W, and “Wj to those four effectible Girard algebras, the motor nerve is certainly the
associativity of their partial multiplications. By applying § to all possible partial binary products one can form and
solve four complete and consistent systems of linear equations -this is a way to access to extended states on wHh,

‘Wév Y ‘Wév *and to (Wév *. One may similarly toy with non-effectible Girard algebras W with n > 3,m > 2 and
n > 1,m > 4 and ascertain the truth about analogous systems of linear equations that they are never consistent.

In this very negative perspective, the present paper continues the author’s recent investigations, for the first time in
the case of non-effectible Girard algebras. We propose a new notion of states on these algebras. The only trouble
with the definition is the existence of states in the mentioned problematic examples. In the paper we restrict
ourselves to the examination of state extensions of the unique states on MV-chains ‘W,, Wi, W4, W5 and We
to canonical extensions Wi\", ’W;V‘ R (Wg/‘, 2-extensions Wf/z, ’ngz, 3-extensions (Wgﬁ, ‘Wévﬁ Wf{“, and also to
4-extensions (Wgw, ’Wévﬁ respectively. We are faced with a somewhat technical difficulty in solving inconsistent
systems of linear equations. But we surmount these obstacles - our method of rejection contradictory equations
seem to be succeeding. Finally, we compare our states with Weber’s weakly additive states and find our more “fit”.

The paper is organized as follows. In Section 2 we recall the definitions of Girard algebras and MV-algebras, and
present several important examples of such structures. In Section 3, we introduce our main concept of fif states on
non-effectible Girard algebras. In this section a great many examples of such states on n-extensions of finite MV-
chains are presented. Finally, in Appendix proofs of Theorem 11, Theorem 12, Theorem 13, Theorem 14, Theorem
15, Theorem 16 and Theorem 17 are presented. Fit states have partial additivity property, i.e., additivity on all
“steady” and possibly on some “deflected” products. By the way, the author prefers to speak of multiplicativity
property of states to be discussed on closer examination.

2. A Girard Algebra of n-Chains in Weber MV-Chain

Given a bounded lattice (L; <, V, A, T, L) under the partial ordering <, with binary join and meet operations V, A
and with greatest element T and least element L. A lattice-ordered commutative monoid (L;<,®, T) has an
associative commutative binary operation ® that is order preserving in each argument and T is its unit element, i.e.
a® T = a. A lattice-ordered commutative monoid is residuated if there is a binary operation &/ (denoted below
by ¢— once) on L, called the residual of ®, satisfying the condition a ® b < ¢ & a < c¢g/b. The residual operation
is monotone in its left (upper) arguments and antitone in its right (lower, respectively). A Girard algebra L is a
residuated lattice-ordered commutative monoid equipped with the unary operation —: L — L (termed negation)
defined by —a := Lg/a provided that 1y/(Lg/a) = a; it is an involution: =—a = a. An MV-algebra is a Girard
algebra L satisfying ag/(ag/b) = bg/(bg/a) for all a,b € Q. A Boolean algebra is an MV-algebra satisfying
® = A.

On most occasions, for Girard algebras and MV-algebras L, another commutative multiplication on L (say g, such
that ap L = a for all a € L) and another binary operation on L (say ,/ or ,—), called dual residual is used; they are
related by

a

~(a®b) = ~ap-b, o= = ap-b, , .

b

T a
=a®-b,-a=,—and =(g—) = ,—.
g,?a (®b) wa

Moreover, L is also dually residuated; it satisfies the following condition: aph > ¢ & a > ¢, /b.

Usually, the authors denote the dual operation ¢ by some summation symbol such as @ or simply +. But I prefer to
view it as a second multiplication. For, turn to corresponding structures of (Girard’s) linear logic (see research by
Girard, 2004). This logic contains two idempotent “additives”: the “positive” connective “Plus” (usually denoted
by @) and the “negative” connective “With” (denoted by &), which can be modelled by lattice operations V and A,
respectively. Moreover, it still contains two (not necessarily idempotent) “multiplicatives”: the positive connective
“Times” (denoted by ®) and the negative connective “Par” (denoted by reversed symbol to &). The basic principle
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of linear logic is that the connectives of the same polarity commute, i.e., the identities:
(a@a®b)®@c~(a®c)® (b®c)and (a&b)pc ~ (apc)&(bpc)

hold, where we used the Weierstrass p to denote “Par’”; this property corresponds to the distributivity of a Girard
algebra. Thus, in view of the J.-M. Andreoli and J.-Y. Girard polarity (positive/negative) (see paper by Girard,
2004), the operation ® is meant as a positive multiplication and the operation ¢ as a negative multiplication.
Moreover, the join V is used as a positive addition, and the meet A as a negative addition.

From now on, we deal with Girard algebras and M V-algebras in the absence of “positive” operations ® and g/, be-
cause they are not employed through the paper. We present several examples of M V-algebras and Girard algebras.

Example 1

(i) The real unit interval [0, 1] equipped with the multiplication ¢, the residual ,— and with the negation — given
by
apb = min(a + b, 1), @% =max(c—b,0)and~a=1-a

is an MV-algebra referred to as Lukasiewicz algebra.

(i1) Foreach m = 1,2,.. ., the set
1 m—1
Ly =0, —,....,——, 1}
m m

equipped with operations as in the L.ukasiewicz algebra is an MV-algebra (also called the Lukasiewicz MV-chain).

(iii) The finite chain of integers N,, = {0, 1,...,m} equipped with the multiplication @, the residual ,— and the
negation — defined by

k
ipj=min(i + j,m), ,~ = max(k — j,0) and -k = m — k
J

is an MV-algebra.

0 1

@iv) For m > 2, let ‘W,, be the chain with exactly m — 1 different non-trivial elements, say L =: a”’ <a < --- <

a" ! < a" := T. Then ‘W,, has a unique MV-algebra structure given by

k
min(i+jm) &
> K

i amax(k— 7,0)
a’l

m—k

d'pa’ =a and —d* = a

Furthermore follow:
d=a'9.. pa" and /™t = d/pa* if j+ k < m,
——
k times
where ¢ is the partially defined binary operation on “‘W,,: apb is defined and equal to apb when a < —b. This
MV-algebra first introduced by Weber (2010, Theorem 1.5) will be referred to as Weber MV -chain.

(v) For integers m > 2 and n > 1, let (WZ be the class of order-reversing families (a,a", ..., a") (with iy > i} >
... > I,) of elements of Weber MV-chain ‘W,, called n-chains. This class termed an n-extension of “W,, (where
W,, is identified with its diagonal {(a®,a®,...,a") | a® € W,,} has a unique non-MV-Girard algebra structure
given by
(aio,ai‘,...,ai") < (ajo,ajl,...,ai") S0y < Joo i1 < Jlsee-sin < Ju»
@, d, ... dnpla®,al, ... ahy = (@mntiom gminGitivioctivm - gminGt ooty
(akn,akl’.__’ak” o . . . . w
g = <amax(ko Josk1 =1 seeskin j,,,O)’amax(kl Joreeorkn j,H,O)’ o ’amax(kn 10,0)>

{al,an,...,al)

and
—(a*,a",...,a") ={d"",d" """, ..., ad" ).

Note that n-extensions of MV-algebras in the case of n = 1 were first proposed in research by Hohle and Weber
(1997), and in the case of an arbitrary integer n in paper by Gylys (2012).

Let (L; 9, —) be an MV-algebra. Recall that a state on L is any mapping st: L — [0, 1] such that (i) s#(T) = 1, and
(ii) st(apb) = st(a) + st(b) whenever apb is defined in L. Additionally, the partial products apb exist in L and are
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equal to apb when a < —b. Usually, the authors say that a state has the additivity property. But I prefer to drop
this term and to speak of multiplicativity property of states on MV-algebras or on Girard algebras.

3. Fit States on n-Extensions of Weber /M V-Chains

Now, we are almost ready to introduce our main concept of fir states on Girard algebras. Let us still recall several
definitions and facts.

Definition 2 (Gylys, 2010, Definition 3.5) A Girard algebra (Q; ¢) is said to be effectible when its partial mul-
tiplication ¢ satisfies associativity: the implication Axpy, I(xpy)pz = Jyoz, IxP(y9z) holds for all x,y,z € Q.
Additionally, the partial products xg@y exist in Q when the following restrictions hold (introduced by Hohle &
Weber, 1997):

Py _ xPy _
p—— =yand ,— =x
X y

Definition 3 (Gylys, 2012, Definition 6.2) Let (Q; ¢) be an effectible Girard algebra. A state on Q is any mapping
st: L — [0, 1] such that (i) s#(T) = 1, and (i1) st(xgy) = st(x) + s#(y) whenever xgy is defined in Q.

In fact, this concept of a state is well known-at least for effect algebras (see Dvurecenskij & Pulmanova, 2000, p.
30)-but effectible Girard algebras with multiplications restricted to partial ones are effect algebras as well (Gylys,
2010, Proposition 3.11).

All MV-algebras (and therefore Weber MV-chains ‘W,,) are examples of effectible Girard algebras. But the list
of known effectible non-MV-algebras is short: 1-extensions (Wév ' ’ng ' and 2-extensions ’W;VZ, ’ngz of Weber
MYV-chains ‘W, and ‘W3, respectively. (Such algebra is also the real unit interval [0, 1] equipped with the “nilpotent

maximum” 7-conorm (introduced by Fodor, in 1995).

Proposition 4 (Weber, 2009, Corollary 5.2) For any natural number m, the Weber MV -chain ‘W,, has a unique
state s given by

k
s(ak) =—fork=0,1,...,m.
m

(Therefore, s can also be seen as an isomorphism from ‘W, onto the Lukasiewicz MV-chain Ly,.)

Now we start with the unique state s on ‘W, (with some natural number m) and look for state extensions § on
W,,A,/ For the mentioned cases m = 2,3 and n = 1,2, positive results are obtained by Weber and the author.
Unfortunately, for m > 4 and n > 1 and for m > 2 and n > 3, n-extensions of Weber MV-chains are not effectible,
and it is not clear what “state” § extends s. From now on, elements a°, a', . .., a" of the Weber MV-chain ‘W,, will
be simply denoted by 0, 1,...,m, and n-chains (@, a™, ..., da") (with ip > iy > ... > i,) of Wh" will be denoted
by ioij .. . iy, for short.

Theorem 5 The Weber MV -chains ‘W, for m = 2,3 permit states on their n-extensions W of Wy, withn = 1,2.
(i) For m =2 and n = 1 (Weber, 2009, Example 3.5(a)): The unique state s on ‘W, given by so =0, s; = 1/2 and
5o = 1, has a unique state extension § on (Wévl defined by So0 = 0, 8§10 = 1/3, §11 = 1/2, §0 = 1/2, 51 =2/3, and
$» =1.

(ii) For m = 3 and n = 1 (Weber, 2009, Example 3.5(b)): The unique state s on ‘Wi, given by sy = 0, s,

s> = 2/3 and s3 = 1, has a unique state extension § on "ng‘ defined by 590 = 0, §10 = 1/4, §11 = 1/3, 8
§o1 =1/2, 530 = 1/2, §31 = 5/8, 3§32 = 3/4, and 533 = 1.

1/3,
3/8,

(iii) Form = 2 and n = 2 (Gylys, 2012, Theorem 6.10(iii)): The unique state s on ‘W, has a unique state extension
5 on (Wé\/z given by 5000 = 0, 5100 = 1/4, 5110 = 3/8, 5111 = 1/2, 52()() = 1/3, §210 = 1/2, 52]1 = 5/8, 5220 = 2/3,
5221 = 3/4, and 5222 =1.

(iv) For m = 3 and n = 2 (Gylys, 2012, Theorem 6.10(iv)): The unique state s on ‘W5 has a unique state extension §
on (ngz given by 5000 = 0, §100 = 1/5, 5110 = 4/15, §]1] = 1/3, 52()0 = 4/15, 52]0 = 2/5, §2|1 = 7/15, §22() = 7/15,
Sp1 = 8/15, §200 = 2/3, §300 = 1/3, §310 = 7/15, 3311 = 8/15, 5300 = 8/15, §321 = 3/5, $300 = 11/15, 5330 = 2/3,
5331 = 11/15, §332 = 4/5, and 5333 =1.

Now we are preparing for a study of state extensions § on non-effectible Girard algebras “W,," form > 4, n > 1
and form >2,n > 3.

Let (Q; ¢) be a non-effectible Girard algebra equipped with the partial multiplication ¢. Consider the following
“non-associative” situations:
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(1) The partial triple product (apb)pc # T is defined (i.e. the partial binary products involved are defined) for
some elements a, b, ¢ € L, but neither ap(bgc) nor bg(agc) are not;

(2) The partial triple products (apb)pc # T and ap(bpc) # T are both defined, but bp(agc) is not;
(3) The partial triple products (apb)pc # T and by (agc) # T are both defined, but ap(bg@c) is not.
If the situation (1) takes place then we say that the partial binary products apb(= apb) and (apb)pc(= apbpc) are
deflected. If the situation (2) occurs then the partial binary products apb(= apb), (apb)pc(= apbpc), boc(= bpc)
and ap(bgpc)(= apbpc) are deflected, while in the situation (3) the following partial binary products: apb(= apb),
(apb)pc(= apbpc), apc(= apc) and bp(apc)(= apbpc) are deflected. A partial binary product apb = apb is
steady when it is not deflected. It is clear that partial products ap—a = T are always steady. Moreover, at all times
partial products within an effectible Girard algebra are steady.
Definition 6 Let (Q; ¢) be a non-effectible Girard algebra equipped with the partial multiplication .
(1) A fit state on Q is any mapping st: Q — [0, 1] such that

(1) s#(T) = 1 (boundary condition);

>ii) x <y = st(x) < st(y) (isotonicity);

(iii) the equality st(xpy) = st(x) + st(y) (partial multiplicativity or PM, for short) holds on all steady and
possibly on some deflected binary partial products x¢y within Q.

(2) Weber state on Q is an isotonic map st: Q — [0, 1] satisfying the boundary condition and fulfilling PM only
on all MV-subalgebras of Q (see Weber, 2009, 2010).

Let us put the results from research by Weber (2010) concerning “weakly additive” extensions of the unique state
s on an MV-chain W, to its canonical extension (l-extension in our terminology) WM. In paper by Weber
(2010, Theorems 2.5 and 2.6), it is proved that all M'V-subalgebras of W,’,\,/ ' can be identified as Weber MV -chains.
Moreover, Weber established the following fact.

Theorem 7 (Weber, 2010, Corollary 3.2) There exists a unique weakly additive measure (Weber state in our
terminology) W on WM given by Wyj = k/(m + k — j) for all k > j.

This formula can be written in the form Wy; = M(s, s;), based on the special “mean value function” M(x,y) =
x/(1+x—-y).

Unfortunately, Weber’s works do not deal with n-extensions ’W,,’Y" withn > 1.

Concerning non-effectible Girard algebras Wn)\q/ form > 4,n > 1 and for m > 2, n > 3, let us denote by E,

S and D7, the set of all possible existing partial binary products within W the set of all existing steady partial
binary products within W and the set of all existing deflected partial binary products within W, respectively.

Theorem 8 The unique state s on MV-chain ‘W, defined by sy = 0, s1 = 1/4, s, = 1/2, s3 = 3/4 and s4 = 1, has
a unique fit state extension § on (Wj‘v' defined by

Soo = 0, §10 = 1/5, 511 = 1/4, 320 = 1/3, §21 = 2/5, 50 = 1/2, $30 = 2/5, 531 = 1/2, §3p = 3/5, §33 = 3/4,
S40 = 1/2, 541 = 3/5, 840 = 2/3, 343 = 4/5, and 344 = 1.

Proof. We have that (Wiv‘ consists of 15 elements: 00 < 10 < 11, 20 < 21 < 22, 30 < 31 < 32 < 33,
40 < 41 <42 <43 < 44. The set E}‘ of all possible existing partial products is the following:

10910 = 21, 10920 = 31, 10921 = 32, 10930 = 41, 10931 = 42, 10932 = 43, 10043 = 44, 11911 = 22,
11922 = 33, 11933 = 44, 20920 = 42, 20031 = 43, 20942 = 44, 21921 = 43, 21932 = 44, 22922 = 44,
30930 = 43, 30941 = 44, 31931 = 44, 40940 = 44 and xp00 = x for all x € W),

Using this list we verify the existence of all possible partial triple products. We find two “non-associative” situa-
tions:
(10920) 910 = 42 is defined but 20¢ (10¢10) is not
[ ——
=31 =21
and
(10920) 920 = 43 is defined but 10¢ (20¢20) is not.
N——— ———
=31 =42
Thus, the following partial binary products 10920 = 31, 10931 = 42 and 20931 = 43 are deflected, while steady
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partial binary products are as follows:

10910 = 21, 10921 = 32, 10930 = 41, 10932 = 43, 10943 = 44, 11911 = 22, 11922 = 33, 11933 = 44,
20920 = 42, 20042 = 44, 21921 = 43, 21932 = 44, 22922 = 44, 30930 = 43, 30941 = 44, 31931 = 44 and
40940 = 44.

Applying § to all steady partial binary products within WN' | we obtain the following system of linear equations:
2510 = S21, 10+ 321 = 532, S10+ 330 = 341, S10+ §32 = S43, S10 + 343 = Saq, 2511 = 322, S11+ 522 = 33, $11 + 533 = Sua,
2320 = Sa2, 820 + Sa2 = 544, 2321 = Su3, 521 + 530 = Sus, 2820 = Su4, 2830 = 343, §30 + 541 = Sa4, 28531 = 344, 2540 = Sua.
In view of the extension property: Soo = 5o =0, 5§11 =851 = 1/4, 50 =5 =1/2,533 =53 =3/4and §yy = 54 = 1,
we solve this system and obtain the solution, as states. |

Observe that 1-extension ‘Wf’ ' of the Weber M V-chain W, contains the following five Weber M V-chains:

00 < 10 < 10%(= 21) < 10%°(= 32) < 10%(= 43) < 10°?(= 44), 00 < 11 < 11%°(= 22) < 113°(= 33) < 11%(=
44), 00 < 20 < 20%(= 42) < 20°°(= 44), 00 < 31 < 31%9(= 44) and 00 < 40 < 40%°(= 44).

It can be seen from Theorem 7 and the preceding proposition that values of the fit state § on (Wflv ' (except values
§30 and §41) are in line with those of Weber state W. By definition of W, we have that it fulfils PM only on all
partial binary products in enumerated M V-chains, i.e. on

10910 = 21, 10921 = 32, 10932 = 43, 10943 = 44, 21921 = 43, 21932 = 44, 11911 = 22, 11922 = 33,
11933 =44, 22922 = 44, 20920 = 42, 20042 = 44, 31931 = 44 and on 40940 = 44;

by the preceding theorem, everyone is steady product within (Wf '. But this list of steady products is not full - the
remainder is the following: 10930 = 41, 30930 = 43 and 30941 = 44. Thus, the state § on (Wivl fulfils PM on a
little larger family of partial binary products than Weber state W does.

Theorem 9 The unique state s on ‘Ws, given by so =0, s1 = 1/5, 55 =2/5, s3 =3/5, s4 =4/5 and s5s = 1, has an
infinite family of fit state extensions § on (ng ' defined by

So0 =0, §10 = 1/6, 511 = 1/5, §20 = 1 = 2p, 321 = 1/3, 522 = 2/5, 530 = p, §31 = 4p — 1, §32 = 1/2, §33 = 3/5,
S40 =5/12, 541 = 1/2, 4o =2 —4p, S43 = 2/3, a4 = 4/5, §50 = 1/2, §51 =7/12, §5p = 1 — p, §53 = 2p, §54 = 5/6,
and 555 = 1,

where the parameter p is located in the interval [1/3,3/8]. Among these fit state extensions there are three ones
Sulfilling PM not only on all steady binary products but also on several deflected binary products:

(1) if p = 1/3, then in addition § fulfils PM on 10930 = 41, 10941 = 52 and 30941 = 54;

(2) if p = 17/48, then § also satisfies PM on 10931 = 42 and 31931 = 54;

(3) if p = 13/36, then § accomplishes PM on 10920 = 31, 10930 = 41, 10942 = 53 and 20942 = 54.

Proof. We have that ’ng' consists of 21 elements: 00 < 10 < 11, 20 < 21 < 22, 30 < 31 < 32 < 33,

40 <41 <42 <43 < 44,50 < 51 <52 <53 <54 < 55. A routine calculation shows that the set E; of all possible
existing partial products is the following:

10910 = 21, 10920 = 31, 10921 = 32, 10930 = 41, 10931 = 42, 10932 = 43, 10040 = 51, 10941 = 52,
10942 = 53, 10043 = 54, 10954 = 55, 11911 = 22, 11922 = 33, 11933 = 44, 11944 = 55, 20920 = 42,
20930 = 52, 20931 = 53, 20042 = 54, 20953 = 55, 21921 = 43, 21932 = 54, 21943 = 55, 22922 = 44,
22933 = 55, 30930 = 53, 30941 = 54, 30952 = 55, 31931 = 54, 31942 = 55, 32932 = 55, 40940 = 54,
40951 = 55, 41941 = 55, 50950 = 55 and x900 = x for all x € W',

Now verifying each of the partial triple products in turn, we establish the following six exclusive situations:

(10920) 910 = 42 is defined but 20¢ (10¢10) is not;
N—— —_——

=31 =21

(10920) 931 = 209 (10931) = 54 are defined but 10¢ (20931) is not;
— ———— ————

=31 =42 =53

(10930) 910 = 52 is defined but 30¢ (10¢10) is not;
S—— S——
=41 =21
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(1030) 930 = 54 is defined but 10¢ (30¢30) is not;
N e’ N e’
=41 =53
(10931) 910 = 53 is defined but 319 (10¢10) is not;
~—— ——
-4 =21
(10931) 920 = 319 (10920) = 54 are defined but 10¢ (31$20) is not.
—_—— —_— —_——
-4 =31 =53
Thus, the set Dé of deflected partial binary products within (W;V " is as follows: 10920 = 31, 10930 = 41,
10931 =42, 10941 = 52, 10942 = 53, 20942 = 54, 30941 = 54 and 31931 = 54. Now applying 5§ to all steady
partial products within W' we obtain the following system of linear equations:
2510 = S21, S10+ 521 = 532, S10+ 332 = 343, S10+ S0 = Ss1, S10+ 543 = 854, S10+ 354 = 355, 2811 = 520, $11 + 522 = 533,
511+ 533 = Saa, S11 + 344 = Ss55, 2520 = S42, 520 + 530 = S52, S20 + 331 = 353, S20+ S53 = 55, 2521 = 843, $21 + $32 = Isa,
So1 + 843 = 3855, 28520 = 34, 520 + 333 = 355, 2830 = 353, 30 + S50 = 355, 831 + Sap = 55, 2832 = 355, 2340 = 354,
S40 + §51 = §s5, 2841 = §s55 and 2850 = §ss.
We have that §y0 = 5o = 0, 5§11 = 51 = 1/5, 50 = 50 = 2/5, 533 = 53 = 3/5, §44 = 54 = 4/5 and 555 = 55 = 1.
In view of this extension property, the analysis of the system shows that it is not complete with §3y as a parameter

varying in the interval [1/3, 3/8] (by the isotonicity of §). To supplement the system, we are looking for consistent
equations by applying § to suitable deflected partial products. We discover that

(1) the system of linear equations together with the equation §19 + §39 = 541
(2) the system together with the equation §jo + §3; = §42;
(3) the system together with the equation §yo + 529 = 31

form three complete systems of linear equations yielding the required solutions. Finally, in these three cases
applying 5§ to all deflected partial products, we complete the proof. ]

Observe that the 1-extension ’ng ' of the Weber MV-chain ‘W5 contains the following four Weber M'V-chains:
00 < 10 < 10%(= 21) < 10%(= 32) < 10%(= 43) < 10°?(= 54) < 10%9(= 55), 00 < 11 < 11%°(= 22) < 1139(=
33) < 11%9(= 44) < 1159(= 55), 00 < 41 < 41%(= 55) and 00 < 50 < 50%(= 55).

From Theorem 7 and the preceding proposition it follows that values of all fit states § on 'ng ' (except values $y,
5305 $31, S40, Sa2, 51, 852 and §s53) coincide with those of Weber state W. By definition of W, we have that it fulfils
PM only on the next partial binary products:

10910 = 21, 10921 = 32, 10932 = 43, 10943 = 54, 10954 = 55, 21921 = 43, 21932 = 54, 32932 = 55,
11911 =22, 11922 = 33, 11933 = 44, 11944 = 55, 22922 = 44, 22933 = 55, 41941 = 55 and 50950 = 55;

by the preceding theorem, everyone is steady product within (ng '. But PM of W cases to exist on all deflected
products and on the next steady products:

10940 = 51, 20020 = 42, 20930 = 52, 20931 = 53, 20053 = 55, 30930 = 53, 30952 = 55, 31942 = 55,
40940 = 54 and 40951 = 55.

Thus, at first sight, all fit states on (ng " have a lead over Weber state W.

Theorem 10 The unique state s on ‘W, given by so = 0, 51 = 1/6, s = 1/3, 53 = 1/2, 54 = 2/3, 55 = 5/6 and
s¢ = 1, has an infinite family of fit state extensions § on ‘Wév " defined by

S0 =0, §10 = 1/7, 511 = 1/6, §20 = 1/4, 531 = 2/7, $20 = 1/3, 530 = q/2, §31 = 3/8, §3» = 3/7, 5§33 = 1/2,
S40 = 3/8, 841 = 1= p, S4p = 1/2, S43 = 4/7, 544 = 2/3, 850 = 3/7, §51 = 1/2, §50 = p, §53 = 5/8, 354 = 5/7,
§55 = 5/6, 560 = 1/2, 561 = 4/7, 552 = 5/8, 563 = q, §64 = 3/4, 565 = 6/7 and §66 = 1,

indexed by p and q such that 1/2 < p <5/8 < g < 3/4. Among these fit state extensions there are six ones fulfilling
PM not only on all steady partial binary products but also on some deflected partial binary products:

(1)if p =11/21 and q = 2/3, then in addition § fulfils PM on 10930 = 41, 10952 = 63 and 30952 = 65;
(2)if p = 31/56 and q = 39/56, then § also satisfies PM on 10952 = 63 and 20941 = 63;

(3)if p =4/7 and q = 9/14, then additionally § fulfils PM on 10941 = 52, 20030 = 52 and 41941 = 65;
(4)if p =4/7 and q = 19/28, then § also satisfies PM on 10941 = 52, 20941 = 63 and 41941 = 65;
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(5)if p=4/7 and q = 5/7, then in addition § fulfils PM on 10941 = 52, 10952 = 63 and 41941 = 65;
(6)if p=7/12 and q = 2/3, then § accomplishes PM on 20930 = 52 and 20941 = 63.

Proof. We have that (Wév‘ consists of 28 elements: 00 < 10 < 11, 20 < 21 < 22, 30 < 31 < 32 < 33,
40 <41 <42 <43 <44,50 <51 <52 <53 <54 <55 60<61<62<63<64<65<066.An ordinary
calculation shows that the set Eé of all possible existing partial binary products is as follows:

10910
10942
111
20940
21954
31931
40962

= 21, 10920
= 53, 10943
=22, 11922
= 62, 20941
= 66, 22922
= 64, 31942

31, 10921 = 32, 10930 = 41, 10931 = 42, 10932 = 43, 10940

= 54, 10950 = 61, 10951 = 62, 10952 = 63, 10953 = 64, 10954
= 33, 11933 = 44, 11944 = 55, 11955 = 66, 20020 = 42, 20930
= 63, 20042 = 64, 20953 = 65, 20964 = 66, 21921 = 43, 21932
= 44, 22933 = 55, 22944 = 66, 30930 = 63, 30941 = 64, 30952

= 65, 31953 = 66, 32932 = 65, 32943 = 66, 33933 = 66, 40940

51, 10941 = 52,
65, 10065 = 66,
52, 20931 = 53,
54, 21943 = 65,
65, 30063 = 66,
64, 40951 = 65,

= 66, 41941 = 65, 41952 = 66, 42942 = 66, 50950 = 65, 50961 = 66, 51951 = 66, 60960 = 66 and
xp00 = x for all x € W',

Now verifying each of the partial triple products in turn, we establish the following sixteen exclusive situations:

(10920) 910 = 42 is defined but 20¢ (10 10) is not;
S—— S——

=31 =21

(10920) 942 = 209 (10942) = 65 are defined but 10¢ (20942) is not;
—_—— —_—

=31 =53 =64
(10930) 910 = 52 is defined but 30¢ (10¢10) is not;
—_——— |
—41 =21

(10930) 920 = 109 (20930) = 63 are defined but 30¢ (10920) is not;
—— —_—— ——
=41 =52 =31
(10$30) 30 = 64 is defined but 10¢ (30¢30) is not;
—_—— —_——
—41 =63
(1030) 941 = 309 (10941) = 65 are defined but 109 (3094 1) is not;
—_——— —_—— —_———
=41 =52 =64
(10931) 910 = 53 is defined but 319 (109 10) is not;
—_— ———
-4 =21
(10931) 931 = 65 is defined but 109 (31¢31) is not;
—_—— —_——

=42 =64
(10940) 910 = 62 is defined but 409 (10910) is not;
—_—— —_—

=51 =21
(10940) 940 = 65 is defined but 10g (40940) is not;
—_— ———

=51 64

(10941) 910 = 63 is defined but 419 (109 10) is not;
[ — L —
=52 =21
(10941) 930 = 419 (10930) = 65 are defined but 10¢ (30941) is not;
~— ~— ~—

=52 =41 =64
(10942) 910 = 64 is defined but 42¢ (109 10) is not;
N— ————
=53 =21
(10942) 920 = 429 (10920) = 65 are defined but 10 (20942) is not;
~———— ——— ———
=53 =31 =64
(20930) 10 = 209 (10930) = 63 are defined but 30¢ (10920) is not;
~———— —— ————
=52 =41 =31
(20930) 930 = 65 is defined but 20¢ (30¢30) is not.
——— ——
=52 =63
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Further, gathering all binary products, we form the set Dé of deflected partial binary products within ‘Wév 'yt
consists of the following partial products as follows:

10920 = 31, 10930 = 41, 10931 = 42, 10940 = 51, 10941 = 52, 10942 = 53, 10951 = 62, 10952 = 63,
10953 = 64, 20930 = 52, 20941 = 63, 20953 = 65, 30952 = 65, 31942 = 65, 40951 = 65 and 41941 = 65.
Now applying 3 to all steady partial products within WM we obtain the following system of linear equations:
2510 = 821, S10+ 521 = 532, S10+ 532 = 343, S10+ 843 = 354, S10+ 350 = 361, S10+ 354 = 65, S10+ 365 = S66, 2511 = 322,
§11 + S0 = §33, S11 + 833 = 844, S11 + Sag = s, 511+ 855 = Se6s 2520 = S, 20 + 531 = 853, S20 + S40 = 62,
520+ 542 = S64, 520 + 864 = Se6, 2521 = S43, 521 + 832 = Ss54, S21 + 343 = 365, 521 + S54 = Fe6, 2522 = 544, $20+ §33 = Iss,
2530 = 363, 2531 = 364> S31 + 853 = 66, 2532 = 65, 532 + Su3 = Se6> 2533 = Se6s 2540 = Se4» Sa0 + Se2 = o6,
S41 + 352 = 66, 2542 = 86, 2550 = 365, S50 + S61 = 366, 2351 = Se6 and 2560 = Se-

Note that S5o90 = s = 0, §11 = 51 = 1/6, 520 = 50 = 1/3, §33 = 53 = 1/2, §44 = 54 = 2/3, §55 = 55 = 5/6 and
566 = S¢ = 1. In view of this extension property, the analysis of the system of linear equations shows that it is not
complete with §s, = p and $g3 = ¢ as parameters such that 1/2 < p < 5/8 < g < 3/4 (by isotonicity of §). To
supplement the system, we are looking for consistent equations by applying § to suitable deflected partial products.
We discover that

(1) the system of linear equations together with the equations 5§y + §39 = 541 and §j9 + S5 = 563;
(2) the system together with the equations 5 + 555 = S¢3 and 529 + 541 = Se3;

(3) the system together with the equations 3o + §30 = S5 and 2541 = S¢s;

(4) the system together with the equations 5 + 541 = S¢3 and 2541 = Ses;

(5) the system together with the equations 5o + §52 = S¢3 and 254, = S¢s;

(6) the system together with the equations 55 + §30 = S5, and §x9 + §41 = 363

form six complete systems of linear equations yielding the required solutions. Finally, applying § to all deflected
partial binary products, we complete the proof. ]

Remark that the 1-extension ‘Wg( ' of the Weber MV-chain ‘W contains the following seven Weber MV-chains:

00 < 10 < 10%9(= 21) < 10%(= 32) < 10*(= 43) < 10°9(= 54) < 10°(= 65) < 1079(= 66), 00 < 11 < 112(=
22) < 1139(= 33) < 11%(= 44) < 1159(= 55) < 119(= 66), 00 < 20 < 20%(= 42) < 203(= 64) < 20°°(= 66),
00 < 30 < 30%(= 63) < 303 (= 66), 00 < 42 < 4229(= 66), 00 < 51 < 5129(= 66) and 00 < 60 < 60>°(= 66).

From Theorem 7 and the preceding proposition it follows that values of all fit states on (Wév ' (except values 349,
S415 850, S50, S61, S62 and Sg3) are in line with those of Weber state W. By definition of W, we have that it fulfils PM
only on the following partial binary products:

10910 = 21, 10921 = 32, 10932 = 43, 10943 = 54, 10954 = 65, 10965 = 66, 21921 = 43, 21932 = 54,
21943 = 65, 21954 = 66, 32932 = 65, 32943 = 66, 11911 = 22, 11922 = 33, 11933 = 44, 11944 = 55,
11955 = 66, 22922 = 44, 22933 = 55, 22944 = 66, 33933 = 66, 20020 = 42, 20942 = 64, 20064 = 66,
42942 = 66, 30930 = 63, 30063 = 66, 42942 = 66, 51951 = 66 and 60960 = 66;

by the preceding theorem everyone is steady product within ‘Wg( '. But this list of steady products is not full - the
remainder is the following:

10950 = 61, 20920 = 42, 20931 = 53, 20040 = 62, 20942 = 64, 20064 = 66, 31931 = 64, 31953 = 66,
40940 = 64, 40962 = 66, 41952 = 66, 50050 = 65 and 50961 = 66.

Thus, all fit states on "Wév ' fulfil PM on a much more large family of partial binary products than Weber state W
does.

Theorem 11 The unique state s on Wy, given by so =0, s1 = 1/4, s = 1/2, s3 = 3/4 and s4 = 1, has a unique fit
state extension § on ’VVA}‘V * defined by

Sooo = 0, S100 = 1/6, S110 = 5/24, 8111 = 1/4, 200 = 1/4, $210 = 1/3, 5211 = 3/8, 3220 = 3/8, §201 = 5/12,
So0 = 1/2, 5300 = 5/18, §310 = 5/12, S311 = 5/12, 830 = 5/12, §31 = 1/2, §300 = 7/12, 5330 = 37/72,
S331 = 7/12, §330 = 5/8, 5333 = 3/4, Sa0 = 1/3, Sa10 = 4/9, San1 = 35/72, Sap0 = 1/2, 3401 = 7/12, 5az2 = 5/8,
5430 = 5/9, 8431 = T/12, S430 = 2/3, 8433 = 19/24, S440 = 2/3, 5441 = 13/18, 5440 = 3/4, $443 = 5/6 and $s44 = 1.
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This unique fit state fulfils PM not only on all steady binary products but also on the following ten deflected binary
products:

1009200 = 310, 1009221 = 322, 1009332 = 433, 1009431 =442, 1109211 = 322, 110220 = 331, 1109221 =
332, 1109322 = 433, 2009431 = 443 and 2209311 = 433,

while PM of § cases to exist on the partial binary products:
1109200 = 311, 1109331 = 442, 2009310 = 431, 2000331 = 433, and 3109310 = 442.
From now on we put all proofs in Appendix. As usual, the very details are tedious.

Theorem 12 The unique state s on W, given by so =0, s1 = 1/5, 55 = 2/5, 53 = 3/5, s4 = 4/5 and s5 = 1, has
an infinite family of fit state extensions § on (ng * defined by

Soo0 = 0, §100 = 1/7, 110 = 6/35, $111 = 1/5, S200 = 3/14, 5210 = 2/7, 3211 = 11/35, 5220 = (1=p)/2, 3221 = 12/35,
S22 = 2/5, 5300 = 11/42, 3310 = 5/14, 3311 = p, 5300 = 11/28, 3301 = 3/7, $300 = 17/35, §330 = p/2 +5/21,
S331 = p/2+2/7, §332 = 18/35, $333 = 3/5, Sa00 = 2/7, Sar0 = 17/42, 5411 = q, San0 = 3/7, S401 = 1/2,
S420 = 5/7 = p/2, 3430 = 19/42, 8431 = 1/2, 8430 = 4/7, S433 = 23/35, S4a0 = 19/35, 3441 = 1 —¢q, 542 = 1 - p,
Sqa3 = 24/35, Sqaq = 4/5, §500 = 1/3, 8510 = 3/7, Ss511 = 16/35, §500 = 10/21, §501 = 23/42, 5500 = 16/21 — p/2,
Ss30 = 11/21, 8531 = 4/7, 3530 = 17/28, §s33 = (p + 1)/2, Ssa0 = 4/7, S541 = 25/42, §s40 = 9/14, Ss43 = 5/7,
Ss44 = 29/35, 3550 = 2/3, §551 = 5/7, 3550 = 31/42, §s553 = 11/14, 3554 = 6/7, §s555 = 1

and indexed by parameters p and q such that
5/14<p<q<16/35 p<3/7andq > 17/42.

These fit states fulfil PM not only on all steady partial binary products but also on the following deflected partial
binary products: 1009200 = 310, 1009300 = 410, 1009541 = 552, 1009542 = 553, 2009210 = 421, 2009431 =
543, 2009542 = 554, 2109431 = 553 and 3009541 = 554. Moreover, among files of this family there are three fit
states fulfilling PM further on the next deflected partial binary products:

(1) if p = 38/105 and q = 43/105, then in addition § fulfils PM on 1109311 = 422, 1109330 = 441, 1109331 =
442, 1109411 = 522, 3119331 = 544 and 3309411 = 544;

(2) if p = 38/105 and q = 13/30, then § fulfils PM additionally on 1109300 = 411, 1109311 = 422, 1109331 =
442, 1109441 = 552, 3009441 = 544 and 3119331 = 544;

(3)if p=27/70 and q = 13/30, then § accomplishes PM further on 1109200 = 311, 1109220 = 331, 110300 =
411, 1109422 = 533, 1109441 = 552, 1109442 = 553, 2009442 = 544, 2209422 = 544 and 3009441 = 544.

Theorem 13 The unique state s on the Weber MV -chain ‘W, given by sy =0, s1 = 1/2 and s, = 1, has a unique

fit state extension § on 3-extension ’Wév‘ of ‘W» defined by

Soo00 = 0, S1000 = 1/5, S1100 = 1/3, 81110 = 2/5, 81111 = 1/2, 32000 = 1/4, $2100 = 2/5, S2110 = 1/2, S2111 = 3/5,
§2000 = 1/2, §310 = 3/5, §2211 = 2/3, 52200 = 3/4, $2221 = 4/5 and 5y = 1.

Theorem 14 The unique state s on the Weber MV -chain ‘W5, given by so =0, s1 = 1/3, s, =2/3 and s3 = 1, has
an infinite family of fit state extensions § on the 3-extension ‘VVéV > of Ws defined by

Soo00 = 0, $1000 = 1/6, 31100 = 1/4, 1110 = 5/18, 81111 = 1/3, 52000 = 5/24, 52100 = 1/3, S2110 = 5/12, 52111 = 4/9,
$2200 = 3/8, §2210 = 5/12, §2011 = 1/2, 82200 = 37/72, 52001 = 5/9, 52220 = 2/3, 53000 = 1/4, 53100 = 3/8, 3110 = P,
S3111 = 35/72, 83200 = 5/12, $3210 = 1/2, §3011 = 7/12, 53200 = 1 = p, §3201 = 7/12, 53000 = 13/18, 53300 = 1/2,
S3310 = 7/12, 53311 = 5/8, 53300 = 5/8, 53301 = 2/3, §3300 = 3/4, §3330 = 3/4, §3331 = 19/24, §3330 = 5/6, §3333 = 1
and indexed by a parameter p located in the real interval [5/12,35/72]. These fit states fulfil PM also on several
deflected binary products: 100091100 = 2110, 100093221 = 3322 and 110093221 = 3332. Moreover, among fit

states of this family there is a state with p = 5/12 fulfilling PM further on three deflected partial binary products:
200092200 = 3220, 200093110 = 3311 and 220093110 = 3331.

Theorem 15 The unique state s on the Weber MV -chain ‘W, given by so =0, s1 = 1/4, s, = 1/2, s3 = 3/4 and
sq4 = 1, has an infinite family of fit state extensions § on the 3-extension Wiv” of Wy defined by

So000 = 0, S1000 = 1/7, S1100 = 1/5, 81110 = 3/14, §1111 = 1/4, S2000 = 1/5, 52100 = 2/7, S2110 = 9/28, $2111 = 5/14,
S000 = 1/3, 310 = 5/14, 32011 = 2/5, S2200 = 2/5, 52001 = 3/7, $2000 = 1/2, S3000 = 3/14, 53100 = 9/28,
S3110 = 53/140, §3111 = 27/70, §3200 = 5/14, §3210 = 3/7, 53211 = 13/28, 53200 = 31/70, 53201 = 1/2, 53000 = 4/7,
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53300 = 2/5, 33310 = 31/70, 53311 = 1/2, §3300 = 67/140, 33321 = 15/28, §3300 = 3/5, 33330 = 4/7, 53331 = 43/70,
S3330 = 9/14, 33333 = 3/4, Sa000 = 1/4, Sa100 = 5/14, Sar10 = 1 = p, Sa111 = 3/7, San00 = 2/5, Sa210 = 13/28,
Sap11 = 73/140, S4200 = 1/2, 84201 = 39/70, 54200 = 3/5, Sa300 = 3/7, 54310 = 1/2, Sa311 = 39/70, S4320 = 15/28,
Saz01 = 4/7, Suzz0 = 9/14, 34330 = p, Sazz1 = 87/140, 54330 = 19/28, Su333 = 11/14, Sas00 = 1/2, Saa10 = 4/7,
Sagr1 = 3/5, Saao = 3/5, Saa01 = 9/14, Sag20 = 2/3, Sasz0 = 9/14, Saa31 = 19/28, Saa30 = 5/7, Saa33 = 4/5,
Sasa0 = 3/4, Sasa1 = 11/14, 34440 = 4/5, S4a43 = 6/7 and Ss4s4 = 1

indexed by a parameter p located in the real interval [4/7,87/140]. These fit states fulfil PM in addition on the
Jfollowing deflected binary products: 111091110 = 2221, 111092111 = 3222, 111092220 = 3331, 111093111 =
4222, 111093222 = 4333, 211192221 = 4333 and 222093111 = 4333. Moreover, if p = 41/70, then § satisfies
PM additionally on 110093000 = 4110, 110094330 = 4441 and 300094330 = 4433, while if p = 43/70, then §
accomplishes PM further on 30003300 = 4330, 300094110 = 4411 and 330094110 = 4441.

Theorem 16 The unique state s on the Weber MV-chain ‘W5 given by so = 0, s1 = 1/2 and s, = 1, has an infinite
SJamily of fit state extensions § on the 4-extension (Wév * of W, defined by

So0000 = 0, S10000 = 1/6, S11000 = P, S11100 = (1 = p)/2, S11110 = 5/12, S11111 = 1/2, S20000 = 1/5, $21000 = 1/3,
S21100 = 1=2p, S1110 = 1/2, So1111 = 7/12, 52000 = 2/5, $22100 = 1/2, 522110 = 2p, $22111 = (p+1)/2, $22000 = 3/5,
$22210 = 2/3, 322011 = 1 = p, 322000 = 4/5, §22001 = 5/6 and 522020 = 1,

where p is a parameter located in the real interval [1/4,1/3]. Among these fit states there are three fit states:

(1) with p = 5/18,

(2) with p = 7/24, and

(3) with p = 1/3,

fulfilling PM further on the next deflected partial binary products:

(1)if p = 5/18, then PM occurs on products: 10000911000 = 21100, 10000922110 = 22211 and 11000922110 =
22221;

(2) if p = 7/24, then PM takes place on products: 10000921100 = 22110 and 21100921100 = 22221,

(3) if p = 1/3, then PM holds on products: 10000911100 = 21110, 10000921110 = 22111 and 11100921110 =
22221.

Theorem 17 The unique state s on the Weber M'V-chain ‘W5, given by so =0, s; = 1/3, s, =2/3 and s3 = 1, has
an infinite family of fit state extensions § on 4-extension ng“ of ‘W5 defined by

So0000 = 0, S10000 = 1/7, S11000 = 3/14, S11100 = 11/42, S11110 = 2/7, St = 1/3, S20000 = 6/35, S21000 = 2/7,
S21100 = 5/14, S21110 = 17/42, So1in1 = 3/7, $2000 = 43/140, S22100 = 11/28, $20110 = 3/7, S22111 = 10/21,
Spm00 = 181/420, $22210 = 19/42, $20011 = 11/21, 322200 = 19/35, 320001 = 4/7, 522020 = 2/3, 530000 = 1/5,
S31000 = 11/35, 331100 = 27/70, $31110 = P, $30111 = 16/35, S30000 = 12/35, 532100 = 3/7, 332110 = 1/2, §30111 =
23742, §33000 = 67/140, $3010 = 1/2, 530011 = 4/7, 530000 = 1 = p, §32001 = 25/42, 330000 = 5/7, 533000 = 2/5,
S33100 = 17/35, 333110 = 73/140, 533111 = 239/420, $33200 = 18/35, 533010 = 4/7, $33011 = 17/28, 533000 = 43/70,
S33001 = 9/14, S33200 = 31/42, §33300 = 3/5, 333310 = 23/35, $33311 = 97/140, 533300 = 24/35, 533301 = 5/7,
§33300 = 11/14, 333330 = 4/5, 533331 = 29/35, 333330 = 6/7 and 533333 = 1,

where p is a parameter located in the real interval [17/42,16/35]. These fit states fulfil PM not only on all steady
partial binary products but also on the following deflected partial binary products:

10000911000 = 21100, 1000011100 = 21110, 10000932221 = 33222, 1000033221 = 33322, 11000920000 =
31100, 11000921000 = 32110, 11000932210 = 33321, 11000932211 = 33322, 11000933220 = 33331,
11000933221 = 33332, 11100932221 = 33332, 20000922000 = 32200, 20000933110 = 33311, 20000933220 =
33322, 21000932210 = 33322 and 22000933110 = 33331.

Moreover, if p = 13/30, then § accomplishes PM further on 11100920000 = 31110, 11100932220 = 33331 and
20000932220 = 33222.

4. Discussion

In this paper we have proposed a new notion of fif states on a Girard algebra opposing to Weber’s concept of weakly
additive states which is based on additivity only for all sub-MV-algebras. That artificial axiom permits to Weber
to obtain a complete characterization of all weakly additive states on the canonical extension ’W,’,\,/ " of any finite
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MYV-chain ‘W, and to express values of a state by an imposing formula (see Theorem 7).

In our paper there is almost nothing done like Weber did because we have needed to go very far in order a posteriori
to understand the nature of a state on each n-extension ‘W, in a separate way. Facts presented in the ends of Proof
of Theorem 12 and of Proof of Theorem 17 reinforce our doubts about Weber’s original choice.

It is natural to examine fit states on products of n-extensions fW,Q(" and to calculate these entities. Since this
theme is beyond the scope of the present paper, we only quote second research by Weber (2010) and paper by
Gylys (2012). But the main challenge is a “move” towards non-commutating generalizations of Girard algebras
developed especially in Slovak and Czech Schools. However, this stumbles on the lack of non-trivial principal
examples and models of such structures.
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Appendix

In this appendix we present proofs of Theorem 11, Theorem 12, Theorem 13, Theorem 14, Theorem 15, Theorem
16, and also of Theorem 17.

Proof of Theorem 11

We have that (Wivz consists of 35 elements: 000 < 100 < 110 < 111, 200 < 210 < 211, 220 < 221 < 222,
300 < 310 < 311, 320 < 321 < 322, 330 < 331 < 332 < 333, 400 < 410 < 411, 420 < 421 < 422,
430 < 431 < 432 < 433,440 < 441 < 442 < 443 < 444. A routine calculation shows that the set Eﬁ of all existing

partial binary products within ‘sz is as follows:

1009100 = 210, 1009110 = 211, 1009200 = 310, 1009210 = 321, 1009221 = 322, 1009300 = 410, 1009310 =
421, 1009320 = 431, 1009321 = 432, 1009332 = 433, 1009430 = 441, 1009431 = 442, 1000432 = 443,
1009443 = 444, 1109110 = 221, 1109200 = 311, 1109211 = 322, 1109220 = 331, 1109221 = 332, 1109300 =
411, 1109311 = 422, 1109322 = 433, 1109330 = 441, 1109331 = 442, 1109332 = 443, 1100433 = 444,
1119111 =222, 1119222 = 333, 1119333 = 444, 2009200 = 420, 2009210 = 421, 2009220 = 422, 2009310 =
431, 2000320 = 432, 2009331 = 433, 2000420 = 442, 2000431 = 443, 2009442 = 444, 2109210 = 432,
2109320 = 442, 2109321 = 443, 2109432 = 444, 2119332 = 444, 2209220 = 442, 2209311 = 433, 2209422 =
444, 2219221 = 443, 2219322 = 444, 2229222 = 444, 3009300 = 430, 3009330 = 433, 3000410 = 441,
3009430 = 443, 3009441 = 444, 3109310 = 442, 3109320 = 443, 3109431 = 444, 3119331 = 444, 3200421 =
444, 3219321 = 444, 3300411 = 444, 4009400 = 440, 4009440 = 444, 4100430 = 444, 4209420 = 444 and
x9000 = x for all x € W)".

Now verifying each of the partial triple products in turn, we establish the following seven exclusive situations:

(1009200) 9310 = 1009 (2009310) = 442 are defined but 2009 (1009310) is not;
~—— —— ~——

=310 =431 =421

(1109211) 9110 = 433 is defined but 211¢ (1109110) is not;
— —

=322 =221
(1109220 9110 = 442 is defined but 2209 (1109110) is not:
S——— ——
=331 =221
(1109221) 9100 = 1109 (1009221) = 433 are defined but 221¢ (100$110) is not;
g — [ — [ —
=332 =322 =211
(2009310) 200 = 443 is defined but 310¢ (2009200) is not;
S— ~—
=431 =420
(1009200) 9200 = 431 is defined but 100g (2009200) is not;
——— —
=310 =420
(110$200) $220 = 2009 (1109220) = 433 are defined but 110¢ (200$220) is not.
—— —— ~——— —— —————
=311 =331 =422

From this it follows that the set Dﬁ of all deflected partial binary products within Wivz is as follows:

1009200 = 310, 1009221 = 322, 1009332 = 433, 1000431 = 442, 1109200 = 311, 1109211 = 322, 1109220 =
331, 1109221 = 332, 1109322 = 433, 1109331 = 442, 2009310 = 431, 2009331 = 433, 2009431 = 443,
2209311 = 433 and 3109310 = 442.

Now applying § to all steady products within ’Wf’z, we obtain the following system of linear equations:

28100 = 5210, S100 + S110 = 5211, S100 + S210 = $321, 100 + F300 = 5410, S100 + 5310 = 421, S100 + 320 = Sa31,

5100 + §321 = 3432, S100 + 5430 = Saa1, S100 + S432 = 8443, S100 + Sa43 = Sada, 25110 = 5221, S110 + S300 = San1,
S110 + 5311 = 3422, S110 + 5330 = Saar, S110 + 5332 = Saa3, S110 + 3433 = Saaq, 28111 = 5o, S + S = Fi3z,
Si11 + 3333 = Saa4, 25200 = 8420, S200 + 5210 = Sa21, S200 + $220 = Saz2, S200 + 5320 = 532, S200 + Sa20 = Saa2,
5200 + Saa2 = Saa4, 28210 = S432, S210 + $320 = Saa2, S210 + §321 = Sa43, $210 + 432 = Sqa4, S211 + §332 = Saua,
28200 = 3442, §220 + 5422 = Saaq, 28201 = Saa3, 3221 + $320 = 3444, 25220 = Sa44, 28300 = 3430, S300 + 5330 = S433,
5300 + 5410 = 3441, S300 + S430 = 5443, 5300 + S441 = Sa44, 5310 + 5320 = 3443, S310 + S431 = Sa44, S311 + §331 = S444,
§300 + 8421 = S4a4, 28321 = S4a4, 3330 + 3411 = 3444, 28400 = 5440, S400 + 5440 = Saa4, S410 + S430 = S4a4 and 23420 = 3444.
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Next, in view of the extension property: Sooo0 = So = 0, §111 = 51 = 1/4, 5200 = 52 = 1/2, §333 = 53 = 3/4 and
S444 = sS4 = 1, we obtain the required solutions. Finally, applying § to all deflected partial binary products, we
obtain that

S100 + 3200 = 5310, S100 + 8221 = 5322, S100 + 5332 = 5433, S100 + S431 = S442, S110 + S200 # 33115 S110 + S211 = I322,

S110 + 8220 = 8331, S110 + 8221 = 5332, S110 + $322 = 8433, S110 + S331 # Sa42, $200 + S310 # 3431, S200 + §331 F 5433,
$200 + 3431 = S443, §220 + 311 = S433 and 28310 # Sa42.

From this, it follows the assertion.
Note that the 2-extension ’Wf’z of the Weber MV-chain ‘W, contains the following seven Weber MV -chains:

000 < 100 < 100*(= 210) < 100%(= 321) < 100*(= 432) < 100%(= 443) < 100%(= 444), 000 < 111 <
111%°(= 222) < 1113%(= 333) < 111%(= 444), 000 < 200 < 2007 (= 420) < 200°°(= 442) < 200% (= 444),
000 < 210 < 210%°(= 432) < 210%9(= 444), 000 < 321 < 32129(= 444), 000 < 400 < 400%(= 440) < 400%(=
444) and 000 < 420 < 42079 (= 444). -

Proof of Theorem 12

We have that ’ngz consists of 56 elements: 000 < 100 < 110 < 111, 200 < 210 < 211, 220 < 221 < 222,
300 < 310 < 311, 320 < 321 < 322,330 < 331 < 332 < 333,400 < 410 < 411, 420 < 421 < 422,430 < 431 <
432 < 433,440 < 441 < 442 < 443 < 444, 500 < 510 < 511, 520 < 521 < 522, 530 < 531 < 532 < 533,
540 < 541 < 542 < 543 < 544,550 < 551 < 552 < 553 < 554 < 555. An ordinary calculation shows that the set
Eg of all possible existing partial binary products within W évz is as follows:

1009100 = 210, 1009110 = 211, 100200 = 310, 1009210 = 321, 1009221 = 322, 1009300 = 410, 1009310 =
421, 1009320 = 431, 1009321 = 432, 1009332 = 433, 1009400 = 510, 1009410 = 521, 1009420 = 531,
1009421 = 532, 1009430 = 541, 1009431 = 542, 1009432 = 543, 1009443 = 544, 1009540 = 551, 1009541 =
552, 1009542 = 553, 1009543 = 554, 1009554 = 555, 1109110 = 221, 1109200 = 311, 1109211 = 322,
1109220 = 331, 1109221 = 332, 1109300 = 411, 1109311 = 422, 1109322 = 433, 1109330 = 441, 1109331 =
442, 1109332 = 443, 1109400 = 511, 1109411 = 522, 1109422 = 533, 1109433 = 544, 1109440 = 551,
1109441 = 552, 1109442 = 553, 1109443 = 554, 1109544 = 555, 1119111 = 222, 111222 = 333, 111333 =
444, 1119444 = 555, 2009200 = 420, 2009210 = 421, 2009220 = 422, 2009300 = 520, 2009310 = 531,
2009320 = 532, 2009331 = 533, 2009420 = 542, 2009431 = 543, 2009442 = 544, 2009530 = 552, 2009531 =
553, 2009542 = 554, 2009553 = 555, 2109210 = 432, 2109300 = 521, 2109310 = 532, 2109320 = 542,
2109321 = 543, 2109430 = 552, 2109431 = 553, 2109432 = 554, 2109543 = 555, 2119221 = 433, 2119332 =
544, 2119443 = 555, 2209220 = 442, 2209300 = 522, 2209311 = 533, 2209330 = 552, 2209331 = 553,
2209422 = 544, 2209533 = 555, 2219221 = 443, 2219322 = 544, 2219332 = 554, 2219433 = 555, 2229222 =
444, 2229333 = 555, 3009300 = 530, 3009330 = 533, 3009410 = 541, 3000430 = 543, 3009441 = 544,
3009520 = 552, 3009530 = 553, 3009541 = 554, 3009552 = 555, 3109310 = 542, 3109320 = 543, 3109420 =
553, 3109431 = 554, 3109542 = 555, 3119331 = 544, 3119442 = 555, 3209320 = 553, 3200421 = 554,
3209532 = 555, 3219321 = 554, 3219432 = 555, 3229332 = 555, 3309411 = 544, 3309522 = 555, 3319422 =
555, 4009400 = 540, 4009440 = 544, 4009510 = 551, 4009540 = 554, 4009551 = 555, 4109410 = 552,
4109430 = 554, 4109541 = 555, 4119441 = 555, 4209420 = 554, 4209531 = 555, 4219431 = 555, 4309521 =
555, 44/\(/)@511 = 555, 5009500 = 550, 5009550 = 555, 5109540 = 555, 5209530 = 555 and x000 = x for all
x € W=,

Now verifying each of the partial triple products in turn, we find the following twenty seven ‘“‘non-associative”
situations:

(100$200) 9210 = 1009 (2009210) = 532 are defined but 200¢ (100$210) is not;

~— ~— —

=310 =421 =321
(1009200) 9310 = 542 is defined but 100¢ (2009310) and 200¢ (1009310) are not;
—— — ———
=310 =531 =421
(100$200) 9320 = 200¢ (100$320) = 543 are defined but 100¢ (200$320) is not;
— — ——
=310 =431 =532
(1009300) 300 = 541 is defined but 100¢ (300$300) is not;
———— ———
=410 =530
(1009300) 9410 = 1009 (3009410) = 552 are defined but 300¢ (1009410) is not;
——— ——— ————
=410 =541 =521
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(1009320) 200 = 3209 (1009200) = 543 are defined but 100¢ (200$320) is not;
— ——— —
=431 =310 =532
(1009320) 210 = 1009 (2109320) = 553 are defined but 320¢ (100$210) is not;
— — ——
=431 =542 =321
(1109200) 9110 = 422 is defined but 2009 (1109110) is not;
N— N—
=311 =221
(1109200) 331 = 2009 (1109331) = 544 are defined but 110¢ (2009331) is not;
N— e | g S— —
=311 =442 =533
(1109220) 9110 = 442 is defined but 220¢ (1109110) is not;
— ———
=331 =221
(1109220) 9311 = 2209 (1109311) = 544 are defined but 110¢ (2209311) is not;
— — ——
=331 =422 =533
(1109300) 9110 = 522 is defined but 300¢ (1109110) is not;
N— N—
=411 =221
(1109300) 330 = 300¢ (110$330) = 544 are defined but 110¢ (300$330) is not;
—_— —_—— —_—
=411 =441 =533
(1109311) 9110 = 533 is defined but 311¢ (1109110) is not;
| — R —
=422 =221

(1109311) 9220 = 3119 (1109220) = 544 are defined but 1109 (2209311) is not;
S—— S——— S———

=422 =331 =533
(1109330) 9110 = 552 is defined but 330¢ (110¢110) is not;
— —
=441 =221
(110$330) 300 = 3309 (1109300) = 544 are defined but 110¢ (300$330) is not;
S——— S——— S———
=441 =411 =533
(1109331) 9110 = 553 is defined but 3319 (1109110) is not;
~— ~—
=442 =221
(1109331) 9200 = 3319 (1109200) = 544 are defined but 110¢ (200$331) is not;
S——— S——— S———
=442 =311 =533
(2009210) 9100 = 2109 (1009200) = 532 are defined but 200¢ (100$210) is not;
— S— —
=421 =310 =321
(2009210) 9320 = 2009 (2109320) = 554 are defined but 210¢ (200$320) is not;
S——— S—— —
=421 =542 =532
(2109320) 9100 = 2109 (1009320) = 553 are defined but 3209 (1009210) is not:
S——— S——— S———
=542 =431 =321
(2109320) 200 = 3209 (2009210) = 554 are defined but 210¢ (2009320) is not;
— S— ——
=542 =421 =532
(3009410) 9100 = 4109 (1009300) = 552 are defined but 300¢ (10094 10) is not;
S—— S——— S———
=541 =410 =521
(3009410) 9300 = 554 is defined but 410¢ (3009300) is not;
~— ~—
=541 =530
(3109310) 9100 = 553 is defined but 310¢ (100$310) is not;
S——— S———
=542 =421
(3109310) 9200 = 554 is defined but 310¢ (2009310) is not.
—— —
=542 =531

From this it follows that the set Dg of all deflected partial binary products within (ngz is as follows:
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1009200 = 310, 1009300 = 410, 1009320 = 431, 1009421 = 532, 1009541 = 552, 1009542 = 553, 1109200 =
311, 1109220 = 331, 1109300 = 411, 1109311 = 422, 1109330 = 441, 1109331 = 442, 1109411 = 522,
1109422 = 533, 1109441 = 552, 1109442 = 553, 2009210 = 421, 2009431 = 543, 2009442 = 544, 2009542 =
554, 2109310 = 532, 2109320 = 542, 2109431 = 553, 2209422 = 544, 3009410 = 541, 3009441 = 544,
3009541 = 554, 3109310 = 542, 3109320 = 543, 3119331 = 544, 3209421 = 554, 3309411 = 544 and
4109410 = 552.

Now applying § to all steady partial binary products within ‘ng > we obtain the following system of linear equa-
tions:

25100 = 5210, §100 + S110 = 3211, S100 + 210 = $321, S100 + 221 = 5322, Fi00 + 5310 = Sa21, S100 + F21 = a3,

S100 + 8332 = 8433, S100 + S200 = 8510, S100 + Sa10 = 8521, S100 + S420 = 5531, S100 + S430 = S5415 S100 + S431 = Ss540,
S100 + 8430 = 8543, S100 + 5443 = Ss44, S100 + Ss40 = 551, S100 + S543 = 8554, S100 + S554 = Sss5, 28110 = $01,
S110 + 8211 = 8322, S110 + 8221 = 5332, S110 + $322 = 5433, S110 + 8332 = 443, S110 + Sa00 = Ss11, S110 + S433 = Ss544,

5110 + 8440 = 8551, S110 + S443 = Sss4, S110 + Ssas4 = 555, 28111 = S22, Sin1 + $222 = 5333, S1i1 + 85333 = Sgaa,

S111 + Saa4 = 555, 25200 = §420, §200 + $220 = 8422, $200 + §300 = 520, 200 + 310 = Ss31, S200 + F320 = Fs532,

$200 + §331 = 3533, $200 + 420 = Ss42, S200 + S530 = 8552, S200 + $531 = 553, $200 + F553 = Sss55, 28200 = Suz2,
$210 + §300 = Ss521, 5210 + 5321 = S543, 3210 + S430 = 3552, S210 + S432 = 554, 5210 + 543 = Ss55, 211 + 221 = 3433,
So11 + 8330 = Ssa4, S211 + Saa3 = Sss5, 28200 = Saan, $200 + 300 = S50, §200 + 311 = F533, §220 + 8330 = §ss0,

§200 + 8331 = 8553, S200 + 8§533 = Sss5, 28001 = 5443, $201 + §300 = 544, $221 + 332 = 554, S221 + 8433 = Ssss,
28200 = S444, $220+ 5333 = 8555, 28300 = 530, $300+ 5330 = 5533, 300+ 5430 = §543, §300 +F520 = F552, 5300+ F530 = §553,

5300 + S550 = 3555, 8310 + Sa00 = Ss53, §310 + Sa31 = 8554, §310 + Ss40 = 555, 311 + Saa = Sss55, 28320 = 553,
§320 + 8530 = 8555, 28301 = 8554, S301 + 8430 = Ss55, $300 + §330 = Sss5, §330 + S500 = 555, §331 + 420 = Fsss,
28400 = 3540, S400 + S4a0 = Ssa4, Sa00 + Ss10 = 551, Sa00 + Ss40 = 554, Sa00 + S551 = Ss55, Sa10 + S430 = 554,

8410 + Ssa1 = Ssss, Sa11 + Saar = Ssss, 23420 = Sssa, San0 + S531 = Ssss. Sao1 + Sa31 = Ssss, Saz0 + Ss21 = Ssss,
Saa0 + 3511 = Ss55, 28500 = 3550, 8500 + S550 = S555, S510 + 5540 = 3555, and at last §sp + 530 = Iss5.

MOI‘COVCI‘, we have that §Q()Q = S0 = 0, §]1] =85 = 1/5, 5222 =85 = 2/5, 5333 = 53 = 3/5, §444 = 854 = 4/5 and
§555 = s5 = 1. It appears that our system of linear equations is not complete with §3;; and §4;; as parameters p and
g, respectively, such that 5/14 < p < ¢ < 16/35, p < 3/7 and g > 17/42 (by the isotonicity of §). To supplement
the system, we are looking for consistent equations by applying § to suitable deflected partial binary products. We
discover that

(1) the system of linear equations together with equations 5109 + §311 = S422 and §110 + $330 = 5441,
(2) the system together with equations 519 + §311 = Sa22 and §19 + $300 = S41; and
(3) the system together with equations §110 + $200 = §311 and §110 + $300 = 5411

form three complete systems of linear equations yielding the required solutions. Finally, applying 5§ to all deflected
partial binary products, we easily verify remaining assertions of the theorem.

Observe that the 2-extension fWgVZ of the Weber MV-chain ‘W5 contains the following four Weber MV-chains:

000 < 100 < 100%(= 210) < 100%(= 321) < 100*(= 432) < 100%(= 543) < 100%9(= 554) < 1007°(= 555),
000 < 111 < 1112°(= 222) < 1113%(= 333) < 111%(= 444) < 1115(= 555), 000 < 500 < 500*°(= 550) <
5003°(= 555) and 000 < 310 < 310%9(= 542) < 310%%(= 555).

We emphasize that PM of § cases to exist on the partial binary product 3109310 = 542. This fact opposes an
axiom of Weber states. ]

Proof of Theorem 13

We have that "Wév" consists of 15 elements: 0000 < 1000 < 1100 < 1110 < 1111, 2000 < 2100 < 2110 < 2111,
2200 < 2210 < 2211, 2220 < 2221 < 2222. An ordinary calculation shows that the set Eg of all possible existing

partial binary products within (VVév * is as follows:

100091000 = 2100, 100091100 = 2110, 100091110 = 2111, 100092100 = 2210, 100092110 = 2211,
100092210 2221, 100092221 = 2222, 110091100 = 2211, 110092110 2221, 110092211 = 2222,
111091110 = 2221, 111092111 = 2222, 11111111 = 2222, 200092000 2200, 20002200 2220,
200092220 = 2222, 210092100 = 2221, 210092210 = 2222, 211092110 = 2222, 220092200 = 2222 and
x90000 = x for all x € (WQ/S.
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Now verifying each of the partial triple products in turn, we establish the next two exclusive situations:

(10009 1100) 91000 = 2211 is defined but 1100¢ (1000 1000) is not and
— —

=2110 =2100

(100091100) 91100 = 2221 is defined but 1000¢ (1100¢1100) is not.
———— N—

=2110 =2211

From this it follows that the set D; of all deflected binary partial products within ‘Wév * consists of three members:
100091100 = 2110, 100092110 = 2211 and 110092110 = 2221.

Now applying § to all steady binary partial products within W we obtain the following system of linear equa-
tions:

251000 = 521005 $1000 + S1110 = 521115 $1000 + $2100 = 522105 $1000 + $2210 = 52221, S1000 + §2221 = 52222, 251100 = $2211,

S1100 + S2211 = $2222, 281110 = $22215 S1110 + S2111 = $2202, 281111 = $2222, 2820000 = 52200, $2000 + $2200 = $2220,
$2000 + 52200 = 52222, 282100 = 52221, $2100 + $2210 = $2222, 282110 = $2220 and 282200 = $2220.

In view of the extension property: Sooo0 = So = 0, $1111 = s1 = 1/2 and §x2 = s, = 1, we obtain solutions, as
asserted.

Remark that the 3-extension W of the Weber MV-chain ‘W, contains the following six Weber M V-chains:

0000 < 1000 < 1000%(= 2100) < 10003 (= 2210) < 1000*(= 2221) < 1000°(= 2222), 0000 < 1100 <
1100%(= 2211) < 1100%(= 2222), 0000 < 1111 < 111129(= 2222), 0000 < 2000 < 2000%(= 2200) <
200039 (= 2220) < 2000 (= 2222), 0000 < 2110 < 2110%(= 2222) and 0000 < 2200 < 2200%9(= 2222). O

Proof of Theorem 14

We have that’W consists of 35 elements: 0000 < 1000 < 1100 < 1110 < 1111, 2000 < 2100 < 2110 < 2111,
2200 < 2210 < 2211, 2220 < 2221 < 2222, 3000 < 3100 < 3110 < 3111, 3200 < 3210 < 3211, 3220 < 3221 <
3222, 3300 < 3310 < 3311, 3320 < 3321 < 3322, 3330 < 3331 < 3332 < 3333. A routine calculation shows that
the set E; of all possible existing partial binary products within ’W;V * is as follows:

100091000 = 2100, 100091100 = 2110, 100091110 = 2111, 100092000 = 3100, 10002100 = 3210,
10002110 = 3211, 100092210 = 3221, 100092221 = 3222, 100093200 = 3310, 100093210 = 3321,
100093221 = 3322, 100093320 = 3331, 100093321 = 3332, 100093332 = 3333, 110091100 = 2211,

110092000 = 3110, 110092100 = 3211, 110092110 = 3221, 110092200 = 3311, 110092210 = 3321,
110092211 = 3322, 110093220 = 3331, 110093221 = 3332, 110093322 = 3333, 111091110 = 2221,
111092000 = 3111, 111092111 = 3222, 111092220 = 3331, 111092221 = 3332, 111093222 = 3333,
111191111 = 2222, 111192222 = 3333, 200092000 = 3200, 200092200 = 3220, 20002220 = 3222,
200093100 = 3310, 200093110 = 3311, 200093200 = 3320, 200093220 = 3322, 200093310 = 3331,

200093320 = 3332, 200093331
210093321 = 3333, 211092110 = 3322, 211092210
220092200 = 3322, 220093110 = 3331, 220093311 = 3333, 221093211 = 3333, 221192211 = 3333,
222093111 = 3333, 300093000 = 3300, 300093300 = 3330, 300093330 = 3333, 310093200 = 3331,
310093320 = 3333, 311093220 = 3333, 320003200 = 3332, 320093310 = 3333, 321093210 = 3333,
330093300 = 3333 and x90000 = x for all x € W1".

3333, 210092100 3321, 210092210

3332, 211093221

3322, 210093210 = 3332,
3333, 211192221 = 3333,

Now verifying each of the partial triple products in turn, we establish the following eight “non-associative” situa-
tions:

(100091100) 91100 = 3221 is defined but 10009 (11009 1100) is not;

S—— S———

=2110 2211
(100091100) 2110 = 10009 (1100$2110) = 3322 are defined but 1100¢ (1000¢2110) is not;
— — —
=2110 =3221 =3211
(110092000) 2000 = 3311 is defined but 1100¢ (2000$2000) is not;
— —
=3110 =3200
(1100$2000) 92200 = 1100¢ (200092200) = 3331 are defined but 2000¢ (1100$2200) is not;
— — —
=3110 =3220 =3311
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(110092110) 1000 = 2110¢ (1000¢1100) = 3322 are defined but 1100¢ (1000¢2110) is not;
| — [ —— [ —

=3221 =2110 =3211
(110092110) 91100 = 3332 is defined but 2110¢ (1100¢1100) is not;
—_——— ~—_———
=3221 =2211
(200092200) 91100 = 2200¢ (110092000) = 3331 are defined but 20009 (1100$2200) is not;
—————— ———— —————
=3220 =3110 =3311
(2000$2200) 2000 = 3322 is defined but 2200¢ (2000¢2000) is not.
| S— | S—
=3220 =3200

From this it follows that the set Dg of all deflected binary partial products within (Wg\@ is the following:

100091100 = 2110, 100093221 = 3322, 110092000 = 3110, 110092110 = 3221, 110093220 = 3331,
110093221 = 3332, 200092200 = 3220, 200093110 = 3311, 200093220 = 3322, 211092110 = 3322 and
220093110 = 3331.

Now applying 3 to Sg within (Wév *, we obtain the following system of linear equations:

251000 = 521005 $1000tS1110 = 321115 51000+ 52000 = 331005 S1000F 52100 = 33210, S1000+ 52110 = 33211, S1000+ 52210 = $3221,
S1000 + 82221 = 83202, S1000 + $3200 = 3310, S1000 + S3210 = 53321, S1000 + $3320 = §3331, S1000 + $3321 = 33325
S1000+53332 = 53333, 281100 = 52211, S1100+32100 = $3211, S1100+52200 = 33311, S1100+ 52210 = 53321, S1100+52211 = §3322,
S1100+583322 = §3333, 251110 = $2221, S1110+52000 = S3111, S1110+82111 = §3202, S1110+52220 = §3331, S1110+52221 = $3332,
S1110 + 33202 = $3333> 281111 = 52022, 1111 + $2222 = §33335 252000 = 532005 52000 + $2220 = 53222, 52000 + $3100 = $33105
5200053200 = §3320, 5200033310 = §3331, 52000153320 = 53332, 52000133331 = 53333, 282100 = §3321, S2100+52210 = $3322,

$2100 + 83210 = 33332, S2100 + 53321 = 83333, S2110 + S2210 = §3332, S2110 + S3221 = 83333, S2111 + $2221 = 83333,

282200 = $3322, 52200 + $3311 = $3333, $2010 + S3211 = $3333, 282011 = §3333, S2200 + 3111 = 53333, 283000 = $3300,

53000 + 83300 = 53330, $3000 + 53330 = $3333, 53100 + S3200 = 3331, S3100 + $3320 = 53333, S3110 + 3220 = §3333,
283200 = 53332, §3200 + §3310 = $3333, 283210 = §3333 and 283300 = 33333.

Moreover, we have that Sy000 = so = 0, S1111 = 51 = 1/3, §2000 = 50 = 2/3 and §3333 = s3 = 1. It appears that
this system is not complete with §3;;9 as a parameter p such that 5/12 < p < 35/72. To supplement the system,
we are looking for a consistent equation by applying § to suitable deflected partial products. We choose the next
complementary equation:

$2000 + 83110 = $3311-

Finally, the completed system yield the required solutions. In view of these solutions, we apply § to all deflected
products in order to verify remaining assertions of the theorem.

Note that the 3-extension ’Wév‘ of the Weber MV-chain ‘W5 contains the following six Weber MV -chains:

0000 < 1000 < 1000%(= 2100) < 10003 (= 3210) < 1000*°(= 3321) < 1000%(= 3332) < 1000%(= 3333),
0000 < 1100 < 1100%(= 2211) < 11003 (= 3322) < 1100*(= 3333), 0000 < 1111 < 111129(= 2222) <
111139(= 3333), 0000 < 2211 < 22112°(= 3333), 0000 < 3000 < 30002(= 3300) < 3000%(= 3330) <
30004 (= 3333) and 0000 < 3210 < 3210%(= 3333). O

Proof of Theorem 15

We have that WQ@ consists of 70 elements: 0000 < 1000 < 1100 < 1110 < 1111, 2000 < 2100 < 2110 <
2111, 2200 < 2210 < 2211, 2220 < 2221 < 2222, 3000 < 3100 < 3110 < 3111, 3200 < 3210 < 3211,
3220 < 3221 < 3222, 3300 < 3310 < 3311, 3320 < 3321 < 3322, 3330 < 3331 < 3332 < 3333, 4000 <
4100 < 4110 < 4111, 4200 < 4210 < 4211, 4220 < 4221 < 4222, 4300 < 4310 < 4311, 4320 < 4321 < 4322,
4330 < 4331 < 4332 < 4333, 4400 < 4410 < 4411, 4420 < 4421 < 4422, 4430 < 4431 < 4432 < 4433,
4440 < 4441 < 4442 < 4443 < 4444,

A routine calculation shows that the set Ei of all existing partial binary products within (Wiv * are as follows:

100091000 = 2100, 100091100 = 2110, 100091110 = 2111, 100092000 = 3100, 100092100 = 3210,
100092110 = 3211, 100092210 = 3221, 100092221 = 3222, 100093000 = 4100, 100093100 = 4210,
100093110 = 4211, 100093200 = 4310, 100093210 = 4321, 100093221 = 4322, 100093320 = 4331,
100093321 = 4332, 100093332 = 4333, 100094300 = 4410, 100094310 = 4421, 100094320 = 4431,
100094321 = 4432, 100094332 = 4433, 100004430 = 4441, 100004431 = 4442, 100004432 = 4443,
100094443 = 4444, 110091100 = 2211, 110092000 = 3110, 110092100 = 3211, 110092110 = 3221,
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110092200 = 3311, 110092210 = 3321, 110092211 = 3322, 110093000 = 4110, 110093100 = 4211,

110093110 = 4221, 110093200 = 4311, 110093211 = 4322, 110093220 = 4331, 110093221 = 4332,
110093300 = 4411, 110093310 = 4421, 110093311 = 4422, 110093320 = 4431, 110093321 = 4432,
110093322 = 4433, 110094330 = 4441, 110094331 = 4442, 110094332 = 4443, 110094433 = 4444,
111091110 = 2221, 111092000 = 3111, 111092100 = 3211, 111092111 = 3222, 111092220 = 3331,
111092221 = 3332, 111093000 = 4111, 111093111 = 4222, 111093222 = 4333, 111093330 = 4441,
111093331 = 4442, 111093332 = 4443, 111094333 = 4444, 200092000 = 4200, 200092100 = 4210,
200092110 = 4211, 200092200 = 4220, 200092210 = 4221, 200092220 = 4222, 200093100 = 4310,
200093110 = 4311, 200093200 = 4320, 200093220 = 4322, 200093310 = 4331, 200093320 = 4332,
200093331 = 4333, 200094200 = 4420, 200004210 = 4421, 200094220 = 4422, 200094310 = 4431,
200094320 = 4432, 200094331 = 4433, 200094420 = 4442, 200094431 = 4443, 200094442 = 4444,
210092100 = 4321, 210092210 = 4322, 210093200 = 4421, 210093210 = 4432, 210093321 = 4433,
210094320 = 4442, 210094321 = 4443, 2100904432 = 4444, 211092110 = 4322, 211092210 = 4332,
211093221 = 4433, 211093320 = 4442, 211093321 = 4443, 211094332 = 4444, 211192221 = 4333,
211193332 = 4444, 220092200 = 4422, 220003110 = 4331, 220093311 = 4433, 220094220 = 4442,
220094422 = 4444, 221092210 = 4432, 221093211 = 4433, 221093220 = 4442, 221093221 = 4443,
221094322 = 4444, 221192211 = 4433, 221193322 = 4444, 222092220 = 4442, 222093111 = 4333,
222004222 = 4444, 222192221 = 4443, 222193222 = 4444, 300093000 = 4300, 300093300 = 4330,
300093330 = 4333, 300094100 = 4410, 300094110 = 4411, 300094300 = 4430, 300094330 = 4433,
300094410 = 4441, 300094430 = 4443, 300004441 = 4444, 310093100 = 4421, 310093200 = 4431,
310093320 = 4433, 310094310 = 4442, 310004320 = 4443, 310094431 = 4444, 311093110 = 4422,
311093220 = 4433, 311093310 = 4442, 311093320 = 4443, 311094331 = 4444, 311193331 = 4444,
320093200 = 4432, 320093310 = 4433, 320004210 = 4442, 320094310 = 4443, 320004421 = 4444,
321093210 = 4443, 321094321 = 4444, 321193321 = 4444, 322094221 = 4444, 3221H3221 = 4444,
330093300 = 4433, 330094110 = 4441, 330004411 = 4444, 331094311 = 4444, 331193311 = 4444,
332094211 = 4444, 333094111 = 4444, 400004000 = 4400, 400094400 = 4440, 400094440 = 4444,
410094300 = 4441, 410004430 = 4444, 411094330 = 4444, 420004200 = 4442, 420094420 = 4444,

421094320 = 4444, 422004220 = 4444, 430004300 = 4443, 430094410 = 4444, 431094310 = 4444,
440094400 = 4444 and x90000 = x for all x € W}".

Now verifying each of the partial triple products in turn, we establish the following forty one exclusive situations:

(100091100) 91100 = 3221 is defined but 1000¢ (1100¢1100) is not;
— —

(100091100) 3221 = 1000¢ (110093221) = 4433 are defined but 1100¢ (1000$3221) is not;
[ —— | S— [ —

(1000$2000) p4310 = 1000¢ (200094310) =
[ — | —

(110092000) 93110 = 4422 is defined but 1100¢ (200093110) and 2000¢ (110093110) are not;
————— ————— —————
=3110
(1100$2000) 93220 = 2000¢ (110093220) =
————— ————

(1100$2000) 93310 = 1100¢ (200093310) =
————— ————

=2110

=3100

=3110

=3110

=2110

=3100

=3110

=3110

=3211

=4332

=4431

=4331

=4331
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=4311

=2211

=4200

=2211

=4200

=2211

=4322

(1000$2000) 92000 = 4310 is defined but 1000¢ (200092000) is not;
———— ————

4442 are defined but 20009 (100094310) is not;
[ S—

=4421

(110092000) 1100 = 4221 is defined but 2000¢ (1100¢1100) is not;
——— ———

(1100$2000) 2000 = 4311 is defined but 1100¢ (2000$2000) is not;
———— ——————

=4221

4433 are defined but 1100¢ (2000$3220) is not;
———

=4322

4442 are defined but 20009 (1100$3310) is not;
————

=4421

(110092100) 1100 = 4322 is defined but 2100¢ (1100¢1100) is not;
— —



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014

(110092100) 92210 = 21009 (110092210) = 4433 are defined but 1100¢ (21002210) is not;
| — [ —— [ —

=3211 =3321 =4322
(110092110) 91100 = 4332 is defined but 2110¢ (110091100) is not;
— —
=3221 =2211
(110092110) 92110 = 4433 is defined but 11009 (2110¢2110) is not;
S—— S———
=3221 =4322
(110092200) 91100 = 4422 is defined but 2200¢ (110091100) is not;
— —
=3311 =2211
(1100$2200) $2200 = 4433 is defined but 1100¢ (2200¢2200) is not;
— —
=3311 =4422
(110092210) 1100 = 4432 is defined but 2210¢ (1100¢1100) is not;
S—— S~———
=3321 =2211
(110092210) 2100 = 2210¢ (11002100) = 4433 are defined but 1100¢ (2100¢2210) is not;
— — —
=3321 =3211 =4322
(1100$3000) 3000 = 4411 is defined but 1100¢ (3000¢3000) is not;
S—— S——
=4110 =4300
(110093000) 3300 = 1100¢ (30003300) = 4441 are defined but 3000¢ (1100¢3300) is not;
— — —
=4110 =4330 =4411

(110093220) 91100 = 4442 is defined but 3220¢ (1100¢1100) is not;
———— [ S —

=4331 =2211
(110093220) 92000 = 3220¢ (110092000) = 4433 are defined but 1100¢ (2000$3220) is not;
— — —
=4331 =3110 =4322
(110093221) 1000 = 3221¢ (10001100) = 4433 are defined but 1100¢ (100093221) is not;
— — —
=4332 =2110 =4322
(110093221) 91100 = 4443 is defined but 3221 (1100¢1100) is not;
S—— S———
=4332 =2211
(111092000) 91110 = 4222 is defined but 2000 (111091110) is not;
— —
=3111 =2221
(111092111 91110 = 21119 (111091110) = 4333 are defined but 2111¢ (11103222) is not;
— — —
=3222 =2221 =4333
(111092220) 91110 = 4442 is defined but 22209 (1110¢1110) is not;
— ~——
=3331 =2221
(111092220) 2000 = 4333 and 22209(1110¢2000) are defined but 1110¢ (200092220) is not;
— —
=3331 =4222
(200092100) 92000 = 4421 is defined but 2100¢ (2000¢2000) is not;
S—— S——
=4210 =4200
(200092100) 3200 = 2100¢ (2000$3200) = 4442 are defined but 20009 (2100¢3200) is not;
— — —
=4210 =4320 =4421
(200092200) $2000 = 4422 is defined but 2200¢ (2000¢2000) is not;
S———— ——
=4220 =4200
(200092200) $2200 = 4442 is defined but 2000¢ (2200$2200) is not;
— —
=4220 =4422
(200093100) 2000 = 4431 is defined but 3100¢ (2000$2000) is not;
— —
=4310 =4200
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(200093100) 93100 = 4442 is defined but 20009 (310093100) is not;
| — | —

=4310 =4421
(2000$3200) 92000 = 4432 is defined but 3200¢ (2000$2000) is not;
S— —
=4320 =4200
(200093310) 1100 = 3310¢ (1100$2000) = 4442 are defined but 20009 (1100¢3310) is not;
— — —
=4331 =3110 =4421
(200093310) 2000 = 4433 is defined but 3310¢ (2000$2000) is not;
— —
=4331 =4200
(200094310) 1000 = 4310¢ (100092000) = 4442 are defined but 2000¢ (100094310) is not;
— — —
=4431 =3100 =4421
(200094310) 2000 = 4443 is defined but 4310¢ (2000$2000) is not;
S— —
=4431 =4200
(220093110) 2000 = 4333 is defined but 2200¢ (200093110) and 3110¢ (2000$2200) are not;
— — —
=4331 =4311 =4220
(300093300) 1100 = 3300¢ (110093000) = 4441 are defined but 3000¢ (1100$3300) is not;
— —— —
=4330 =4110 =4411
(3000$3300) 3000 = 4433 is defined but 3300¢ (30003000) is not.
— —
=4330 =4300

Now gathering all partial binary products from existing partial triple products, we form the set Di within ’Wiv it
consists of the following deflected partial binary products:

100091100 = 2110, 100092000 = 3100, 100094332 = 4433, 100094431 = 4442, 110092000 = 3110,

110092100 = 3211, 110092110 = 3221, 110092200 = 3311, 110092210 = 3321, 110093000 = 4110,
110093110 = 4221, 110093211 = 4322, 110093220 = 4331, 110093221 = 4332, 110093311 = 4422,
110093321 = 4432, 110094330 = 4441, 110094331 = 4442, 110094332 = 4443, 111091110 = 2221,
111092000 = 3111, 111092111 = 3222, 111092220 = 3331, 111093111 = 4222, 111093222 = 4333,
111093331 = 4442, 200092100 = 4210, 20002200 = 4220, 200093100 = 4310, 200093110 = 4311,
200093200 = 4320, 200093310 = 4331, 200093331 = 4333, 200094210 = 4421, 200094220 = 4422,

200094310 = 4431, 200094320 = 4432, 200094331
210004320 = 4442, 211093221 = 4433, 211192221 = 4333, 220093110 = 4331, 220093311 = 4433,
220094220 = 4442, 221093211 = 4433, 222093111 = 4333, 300093300 = 4330, 300004110 = 4411,
300004330 = 4433, 310004310 = 4442 311003110 = 4422, 311003220 = 4433, 311003310 = 4442,
320004210 = 4442 and 330094110 = 4441,

Next, applying §to S i within ’VVZV *, we obtain the following system of linear equations:

4433, 200094431

4443, 210093321 = 4433,

2581000 = $2100» $1000+ 51110 = $2111 $1000+52100 = 53210, S1000+52110 = $3211, S1000+52210 = 53221, 1000352221 = 53222,

S1000 + 83000 = S4100, S1000 + 53100 = S4210, S1000 + S3110 = Sa211, S1000 + $3200 = 34310, S1000 t 53210 = 84321,

S1000 + 83321 = S4322, S1000 + 53320 = 84331, S1000 + §3321 = 4332, S1000 + §3332 = 54333, S1000 + S4300 = S4410,

S1000 + S4310 = S4421, S1000 + 54320 = 34431, S1000 + S4321 = 84432, S1000 + S4430 = Sa4a41, S1000 t S4432 = S4443,
5100054443 = S4444, 281100 = $2211, S1100+52211 = §3322, S1100+53100 = S4211, S1100+53200 = S4311, S1100+53300 = S4411,

S1100 + 83310 = Sa421, S1100 t 53320 = 84431, S1100 + §3322 = S4433, S1100 + S4433 = Sa444, S1110 t 52221 = 83332,

$1110+53000 = S4111, §1110+53330 = S4441, S1110+53332 = 54443, §1110+54333 = Saa44, 281111 = $2002, S1111+52020 = §3333,

S1111+53333 = 54444, 252000 + 542005 $2000+ 52110 = S4211, $2000+ 52210 = $4221, 2000+ 52220 = §4222, $2000+ 53220 = $4322,
$2000+33320 = 54332, 52000+ 54200 = 54420, $2000* 54420 = 34442, 52000+ 54442 = Sa444, 252100 = 54321, $2100+ 52210 = $4322,
$2100+33200 = Sa4215 52100+ 53210 = 54432, $2100+54321 = 54443, 52100+ 54432 = Sada4, 252110 = 54322, $2110+52210 = $4332,

$2110+83320 = S4442, 52110 +53321 = 54443, 5211054332 = 34444, §2111+53332 = Sada4, 2852200 = 54422, 52200+ 54422 = S4444,

28210 = 34432, 52210 + 3200 = Sada2, $2010 + $3221 = Sada3, 2852011 = 5433, So211 + 53300 = Saada, 282000 = Sada0,

$2200 + 83111 = §4333, 52220 + S4220 = Saada, 252001 = Saa43, 2001 + $3220 = 34444, 282020 = Sa4a4, 253000 = 4300,
§3000 + 53330 = 84333, $3000 + S4100 = 4410, 53000 + S4300 = 54430, S3000 + Saa10 = S4441, $3000 + Sa430 = 4443,
5300054441 = S4444, 253100 = S4421, §3100+53200 = S4431, $3100+53320 = $4433, §3100+54320 = S4443, 53100+54431 = S4a44,
53110153320 = S4443, 53110+54331 = S4444, 53111+53331 = 54444, 283200 = S4432, §3200+53310 = S4433, §3200+54310 = S4443,

§3200 + S4421 = 54444, 253210 = 54443, 53210 + 54321 = Saaa4, 53211 + 33321 = Saasa, $3220 + Sa221 = Sa444, 253021 = Sa444,
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233300 = 54433, §3300 + Sa411 = Sad44, §3310 + 54311 = Sa444, 253311 = Sad44, §3320 + 54211 = Saa44, 53330 + Sa111 = Saads,
234000 = 544005 54000+ 54400 = 54440, 52000+ 54440 = 54444, 410054300 = Sa441, S4100+54430 = S4444, Sa110+54330 = 54444,
284000 = Sa442, 54200 + Sa420 = Sada4, 54210 + 54320 = 4444, 2854200 = 54444, 284300 = 54443, S4300 + Saa10 = Saads,
234310 = S4444 and 284400 = S4444-

Moreover, we have the extension property: Soooo = So = 0, S1111 = 1 = 1/4, $2000 = 55 = 1/2, §3333 = 53 = 3/4
and $4444 = 1. It appears that the system with these initial conditions is not complete with 54330 as a parameter p
such that 4/7 < p < 87/140. To supplement the system, we are looking for a consistent equation by applying § to
suitable deflected partial products. We discover that

(1) the system of linear equations together with an equation §j09 + $3000 = Sa110 and

(2) the system together with an equation §3000 + $3300 = S4330 form two complete systems of linear equations
yielding the required solutions.

Finally, in view of these solutions, applying § to all deflected partial products, we conclude a verification of the
assertions of the theorem.

Note that the 3-extension "Wf’ * of the Weber MV-chain W, contains the following ten Weber M V-chains:

0000 < 1000 < 1000%(= 2100) < 10003(= 3210) < 1000%(= 4321) < 1000°(= 4432) < 10009 (= 4443) <
100079(= 4444), 0000 < 1100 < 1100%(= 2211) < 1100%(= 3322) < 1100%(= 4433) < 1100%(= 4444),
0000 < 1111 < 11112°(= 2222) < 11113%(= 3333) < 1111%°(= 4444), 0000 < 2000 < 2000%(= 4200) <
200039 (= 4420) < 2000%(= 4442) < 20007 (= 4444), 0000 < 2200 < 2200%(= 4422) < 2200%(= 4444),
0000 < 3221 < 322129(= 4444), 0000 < 3311 < 33112°(= 4444), 0000 < 4000 < 4000%(= 4400) < 4000 (=
4440) < 4000% (= 4444), 0000 < 4220 < 42202 (= 4444) and 0000 < 4310 < 4310% (= 4444). 0

Proof of Theorem 16

We have that (Wév“ consists of twenty one elements: 00000 < 10000 < 11000 < 11100 < 11110 < 11111,
20000 < 21000 < 21100 < 21110 < 21111, 22000 < 22100 < 22110 < 22111, 22200 < 22210 < 22211,
22220 < 22221 < 22222. An ordinary calculation shows that the set E‘Z‘ of all existing partial binary products

within (Wév * is as follows:

10000910000 = 21000, 1000011000 = 21100, 10000911100 = 21110, 10000911110 = 21111, 10000921000 =
22100, 10000921100 = 22110, 10000921110 = 22111, 10000922100 = 22210, 10000922110 = 22211,
10000922210 = 22221, 10000922221 = 22222, 11000911000 = 22110, 11000911100 = 22111, 11000921100 =
22211, 11000922110 = 22221, 11000922211 = 22222, 11100911100 = 22211, 11100921110 = 22221,
11100922111 = 22222, 11110911110 = 22221, 11110921111 = 22222, 11111911111 = 22222, 2000020000 =
22000, 20000922000 = 22200, 20000922200 = 22220, 20000922220 = 22222, 21000921000 = 22210,
21000922100 = 22221,21000922210 = 22222,21100921100 = 22221,21100922110 = 22222,21110921110 =
22222, 22000922000 = 22220, 22000922200 = 22222 and 22100922100 = 22222.

Next, verifying each of the partial triple products in turn, we establish the following six exclusive situations:

(10000$11000) 10000 = 22110 is defined but 11000¢ (10000$10000) is not;
—— ————

=21100 =21000
(10000911000) 921100 = 110009 (10000921100) = 22221 are defined but 10000¢ (11000921100) is not;
=21100 =22110 =22211
(10000911100) 910000 = 22111 is defined but 11100¢ (10000$10000) is not;
=21110 =21000
(10000911100) 911100 = 22221 is defined but 100009 (11100$11100) is not;
=21110 =22211
(10000921100) 10000 = 22211 is defined but 21100¢ (10000$10000) is not;
=22110 =21000
(10000921100) 11000 = 21100¢ (100009 11000) = 22221 are defined but 10000¢ (11000921100) is not.
=22110 =21100 =22211

Now gathering all partial binary products from existing partial triple products, we form the set D‘2‘ within (Wév it
consists of the following deflected partial products:
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10000¢ 11000 = 21100, 10000911100 = 21110, 10000921100 = 22110, 10000921110 = 22111, 10000922110 =
22211, 11000922110 = 22221, 11100921110 = 22221 and 21100921100 = 22221.

Now applying § to all steady partial products within (Wév * we obtain the following system of linear equations:

2510000 = $21000> $10000 + S11110 = 21111, S10000 + S21000 = 522100, S10000 + $22100 = 522210, S10000 + $22210 = 520201,
S10000 + $22221 = 522222, 2811000 = 322110 S11000 + S11100 = $22111> S11000 + S21100 = $22211, S11000 + $22211 = $22222,
2811100 = $22211> S11100 + $22111 = $22222, 2511110 = $222215 S11110 + S21111 = 522222, 2811111 = 522222, 2820000 = 522000+
$20000 + §22000 = 522200, 520000 + $22200 = 522220, $20000 + $22220 = 522222, 2821000 = $22210, 521000 + S22100 = $22221,
$21000 + $22210 = 322222, S21100 + 322110 = 22222, 2H21110 = 322222, 28522000 = $22220, 22000 + $22200 = $22222 and
2852100 = §22222.

Moreover, we have that Spo000 = So = 0, §11111 = 51 = 1/2 and 32000 = s = 1. It appears that this system of
linear equations is not complete with 5999 as a parameter p such that 1/4 < p < 1/3 (by the isotonicity of §). To
supplement the system, we are looking for consistent equations by applying § to suitable deflected partial binary
products. We discover that

(1) the system of linear equations together with an equation $0000 + $11000 = 5211005
(2) the system together with an equation 25,1109 = §22221 and

(3) the system together with an equation $10000 + S11100 = 321110

form three complete system of linear equations yielding the required solutions.

Finally, in view of these solutions, applying § to all deflected partial binary products, we conclude a verification of
the assertions of the theorem.

Note that the 4-extension (W;V * of the Weber MV-chain W, contains the following six Weber M V-chains:

00000 < 10000 < 10000%°(= 21000) < 10000%*(= 22100) < 10000*°(= 22210) < 10000°°(= 22221) <
10000%°(= 22222), 00000 < 11111 < 11111%°(= 22222), 00000 < 20000 < 20000 (= 22000) < 20000%¢(=
22200) < 20000%°(= 22200) < 20000 (= 22222), 00000 < 21000 < 21000%?(= 22210) < 21000%°(= 22222),
00000 < 21110 < 21110%°(= 22222) and 00000 < 22100 < 22100%(= 22222). O

Proof of Theorem 17

We have that ‘Wév“ consists of fifty six elements: 00000 < 10000 < 11000 < 11100 < 11110 < 11111, 20000 <
21000 < 21100 < 21110 < 21111,22000 < 22100 < 22110 < 22111, 22200 < 22210 < 22211, 22220 < 22221 <
22222, 30000 < 31000 < 31100 < 31110 < 31111, 32000 < 32100 < 32110 < 32111, 32200 < 32210 < 32211,
32220 < 32221 < 32222, 33000 < 33100 < 33110 < 33111, 33200 < 33210 < 33211, 33220 < 33221 < 33222,
33300 < 33310 < 33311, 33320 < 33321 < 33322, 33330 < 33331 < 33332 < 33333. A routine calculation
shows that the set E‘S1 of all existing partial binary products within (Wév * is as follows:

10000910000 = 21000, 1000011000 = 21100, 10000911100 = 21110, 10000911110 = 21111, 10000920000 =
31000, 10000921000 = 32100, 10000921100 = 32110, 10000921110 = 32111, 10000922100 = 32210,
10000922110 = 32211, 10000922210 = 32221, 10000922221 = 32222, 1000032000 = 33100, 10000932100 =
33210, 10000932110 = 33211, 10000932210 = 33221, 10000932221 = 33222, 10000933200 = 33310,
10000933210 = 33321, 10000933221 = 33322, 10000933320 = 33331, 10000933321 = 33332, 1000033332 =
33333, 11000911000 = 22110, 11000911100 = 22111, 11000920000 = 31100, 11000921000 = 32110,
11000921100 = 32211, 11000922000 = 33110, 11000922100 = 33211, 11000922110 = 33221, 11000922211 =
33222, 11000932200 = 33311, 11000932210 = 33321, 11000932211 = 33322, 11000933220 = 33331,
11000933221 = 33332, 11000933322 = 33333, 11100911100 = 22211, 11100920000 = 31110, 11100921000 =
32111, 11100921110 = 32221, 11100922000 = 33111, 11100922111 = 33222, 11100922200 = 33311,
11100922210 = 33321, 11100922211 = 33322, 11100932220 = 33331, 11100932221 = 33332, 11100933222 =
33333, 11110911110 = 22221, 11110920000 = 31111, 11110921111 = 32222, 11110922220 = 33331,
11110922221 = 33332, 11110932222 = 33333, 11111911111 = 22222, 11111922222 = 33333, 2000020000 =
32000, 20000922000 = 32200, 20000922200 = 32220, 20000922220 = 32222, 20000931000 = 33100,
20000931100 = 33110, 20000931110 = 33111, 20000932000 = 33200, 20000932200 = 33220, 20000532220 =
33222, 20000933100 = 33310, 20000933110 = 33311, 20000933200 = 33320, 20000933220 = 33322,
20000933310 = 33331, 20000933320 = 33332, 20000933331 = 33333, 21000921000 = 33210, 21000921100 =
33211, 21000922100 = 33221, 21000922210 = 33222, 21000932100 = 33321, 21000932210 = 33322,
21000933210 = 33332,21000933321 = 33333,21100921100 = 33221, 21100922100 = 33321, 21100922110 =
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33322, 21100932210 = 33332, 21100933221 = 33333, 21110921110 = 33222, 21110922210 = 33332,
21110932221 = 33333,21111922221 = 33333, 22000922000 = 33220, 22000922200 = 33222, 22000931100 =
33311, 22000932200 = 33322, 22000933110 = 33331, 22000933311 = 33333, 22100922100 = 33322,
22100932110 = 33332,22100933211 = 33333,22110922110 = 33332,22110932211 = 33333,22111922211 =
33333, 22200931110 = 33331, 22200933111 = 33333, 22210932111 = 33333, 22220931111 = 33333,
30000930000 = 33000, 30000933000 = 33300, 30000933300 = 33330, 30000933330 = 33333, 31000932000 =
33310, 31000933200 = 33331, 31000933320 = 33333, 31100932200 = 33331, 31100933220 = 33333,
31110932220 = 33333, 32000932000 = 33320, 32000933100 = 33331, 32000933200 = 33332, 32000933310 =
33333, 32100932100 = 33332, 32100933210 = 33333, 32110932210 = 33333, 32200933110 = 33333,
33000933000 = 33330, 33000933300 = 33333 and 33100933200 = 33333.

Next, verifying each of the partial triple products in turn, we discover the following twenty six ‘“non-associative”
situations:

(10000911000 911100 = 32211 is defined but 10000¢ (11000¢11100) and 11000¢ (10000¢11100) are not;
—————— ———— ————

=21100 =22111 =21110

(10000£11000) 21000 = 10000¢ (11000921000) = 33211 are defined but 11000¢ (1000021000) is not;
—————— [ S—— ————

=21100 =32110 =32100
(10000$11000) $p21100 = 33221 is defined but 10000¢ (11000¢21100) and 11000¢ (10000$21100) are not;
=21100 =32211 =32110
(10000911100) 911100 = 32221 is defined but 10000¢ (111009 11100) is not;
=21110 =22211
(10000911100) 21110 = 10000¢ (11100921110) = 33222 are defined but 11100¢ (1000021110) is not;
=21110 =32221 =32111
(10000922100) 11000 = 22100¢ (100009 11000) = 33321 are defined but 10000¢ (11000¢22100) is not;
=32210 =21100 =33211
(10000922100) $21000 = 10000 (21000$22100) = 33322 are defined but 22100¢ (10000921000) is not;
=32210 =33221 =32100
(11000$20000) 20000 = 33110 is defined but 11000¢ (20000$20000) is not;
=31100 =32000
(11000$20000) 32200 = 110009 (20000932200) = 33331 are defined but 200009 (11000932200) is not;
(11000$21000) 10000 = 210009 (100009 11000) = 33211 are defined but 11000¢ (10000¢21000) is not;
(11000$21000) 22100 = 11000 (21000922100) = 33332 are defined but 21000¢ (11000¢22100) is not;
(11100$20000) 20000 = 33111 is defined but 11100¢ (20000¢20000) is not;
=31110 \—=3\22).(‘J()—-/
(1110021110) 10000 = 21110¢ (10000911100) = 33222 are defined but 11100¢ (10000$21110) is not;
=32221 =21110 =32111
(1110021110) 11100 = 33332 is defined but 21110¢ (11100¢11100) is not;
=32221 =22211
(20000$22000) $20000 = 33220 is defined but 22000¢ (20000¢20000) is not;
=32200 =32000
(20000$22000) 31100 = 22000¢ (20000$31100) = 33331 are defined but 20000¢ (22000¢31100) is not;
=32200 =33110 =33311
(20000$22200) 911100 = 22200¢ (11100$20000) = 33331 are defined but 20000¢ (11100¢22200) is not;
=32220 =31110 =33311
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(20000$22200) 20000 = 33222 is defined but 22200 (20000$20000) is not;
—— N——

=32220 =32000
(20000931100) 20000 = 33311 is defined but 31100 (20000$20000) is not;
=33110 =32000
(20000931100) 22000 = 311009 (20000922000) = 33331 are defined but 20000¢ (22000$31100) is not;
=33110 =32200 =33311
(20000932200) 11000 = 32200¢ (11000920000) = 33331 are defined but 20000¢ (11000$32200) is not;
=33220 =31100 =33311
(20000932200) $20000 = 33322 is defined but 32200¢ (20000$20000) is not;
=33220 =32000
(21000922100) 10000 = 210009 (10000922100) = 33322 are defined but 22100¢ (10000$21000) is not;
=33221 =32210 =32100
(21000922100) 11000 = 221009 (11000921000) = 33332 are defined but 21000 (11000$22100) is not;
=33221 =32110 =33211
(21100921100) 10000 = 33322 is defined but 21100¢ (10000$21100) is not;
=33221 =32110
(21100921100) 11000 = 33332 is defined but 21100¢ (11000$21100) is not.
=33221 =32211

Further, gathering all partial binary products from existing partial triple products, we form the set D‘31 within (ng“;
it consists of the following deflected partial products:

1000011000 = 21100, 10000911100 = 21110, 10000922100 = 32210, 10000932110 = 33211, 1000032221 =
33222, 10000933221 = 33322, 11000920000 = 31100, 11000921000 = 32110, 11000932210 = 33321,
11000932211 = 33322, 11000¢33220 = 33331, 11000933221 = 33332, 1110020000 = 31110, 11100921110 =
32221, 11100932220 = 33331, 11100932221 = 33332, 20000922000 = 32200, 20000922200 = 32220,
20000931100 = 33110, 20000931110 = 33111, 20000932200 = 33220, 20000932220 = 33222, 20000933110 =
33311, 20000933220 = 33322, 21000921100 = 33211, 21000922100 = 33221, 21000932210 = 33322,
21100921100 = 33221, 21100922100 = 33321,21110921110 = 33222, 22000933110 = 33331, 2210032110 =
33332, 22200931110 = 33331 and 31100932200 = 33331.

Now applying 3 to all steady partial products within W N: | we obtain the following system of linear equations:

2510000 = 321000> $10000 + S11110 = $21111, S10000 + 520000 = 531000, S10000 + 521000 = 532100, S10000 + S21100 = §32110,
§10000+ 821110 = $32111> S10000 + 522110 = $32211, $10000 + 522210 = 532221, $10000 + 522221 = 5322225 $10000 + 532000 = 5331005
§10000 + 832100 = 533210, $10000 + 532210 = §33221, $10000 + 533200 = 533310, $10000 + 533210 = 5333215 S10000 + 533320 = 5333315
S10000 + §33321 = 333332, S10000 + $33332 = 333333, 2511000 = $22110> S11000 + S11100 = $22111> S11000 + S21100 = F32211,
§11000 822000 = 533110, S11000 + 522100 = 533211, S11000+ 522110 = 533221, S11000 + 522211 = §33222, S11000 + 532200 = 5333115
S11000 + 833322 = 533333, 2511100 = 522211, 11100 + S21000 = $32111> S11100 + $22000 = $33111> S11100 + S22111 = $33222,
S11100 + 322200 = §33311, S11100 + 322210 = §33321, S11100 + 522211 = §33322, S11100 + 533222 = §33333, 2811110 = 522201,
S11110+ 820000 = 8311115 S11110+ 521111 = §32222, S11110+ 522020 = 533331, S11110+ 522021 = $333325 S11110+ 532022 = 5333335
2520000 = 532000, $20000 + $22220 = 532222, 520000 + S31000 = 533100, 520000 + $32000 = 533200, 520000 + $33100 = 533310,
520000 + 533200 = §33320» 520000 + 33310 = §33331> $20000 + 533320 = §33332> $20000 + 533331 = $33333> 2521000 = 5332105
§21000+ 822210 = 533222, $21000 + $32100 = 533321, 521000+ §33210 = 533332, 521000+ §33321 = 533333, 521100+ S22110 = 5333225
521100832210 = §33332, $21100+ 533221 = §33333, 21110+ 522210 = 533332, $21110 + 532221 = §33333, S21111 + 522001 = 533333,
2522000 = $332205 $22000 + 522200 = §33222, §22000 + $31100 = 533311, $22000 + S 32200 = $33322, $22000 + 33311 = 533333,
2822100 = $33322, S22100 + $33211 = §33333, 2822110 = §33332, S22110 + 32211 = §33333, 22111 + 22211 = 833333,
$22200 + 333111 = §33333> $20210 + 32111 = §33333> $22200 + 31111 = §33333> 2530000 = 533000, 30000 + 533000 = 5333005
§30000 + 833300 = 533330, $30000 T $33330 = 533333, §31000 + 532000 = 533310, $31000 + 533200 = 533331, 531000 + 533320 = 5333335

§31100 + §33220 = §33333, $31110 + §32220 = §33333, 2832000 = $33320, $32000 + 33100 = 533331, 32000 + 533200 = 533332,

§32000 + $33310 = §33333, 2832100 = $33332, §32100 + §33210 = $33333, §32110 + $32010 = $33333, §32200 + F33110 = $33333,
2833000 = §33330, $33000 *+ 533300 = $33333 and §33100 + 533200 = 533333-

Moreover, we have that Soooo0 = So = 0, S11111 = $1 = 1/3, 320000 = $2 = 2/3 and §33333 = s3 = 1. It appears
that the system of linear equations is not complete with §31119 as a parameter p such that 17/42 < p < 16/35 (by
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the isotonicity of §). To supplement the system, we are looking for a consistent equation by applying § to suitable
deflected partial products. We choose the equations:

S11100 + 820000 = $31110-

The system of linear equations together with this complementary equation yield the required solutions. Finally,
applying 5 to all deflected partial products, we complete the proof.
Observe that the 4-extension ’W;V“ of the Weber MV-chain ‘W5 contains the following four Weber MV-chains:

00000 < 10000 < 10000%°(= 21000) < 10000%(= 32100) < 10000*(= 33210) < 10000%(= 33321) <
100009 (= 33332) < 100007?(= 33333), 00000 < 11111 < 11111%(= 22222) < 111113?(= 33333), 00000 <
30000 < 300002°(= 33000) < 300003(= 33300) < 30000*%(= 33330) < 30000%(= 33333) and 00000 <
21100 < 21100%9(= 33221) < 211003 (= 33333).

We emphasize that PM of § cases to exist on the partial binary product 21100921100 = 33221. This fact opposes
an axiom of Weber states. ]
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