Strongly Hopfian and Strongly Cohopfian Objects in the Category of Complexes of Left $A$-Modules
- El Diallo
- Mohamed Maaouia
- Mamadou Sanghare
Abstract
The object of this paper is the study of \emph{strongly hopfian}, \emph{strongly cohopfian}, \emph{quasi-injective}, \emph{quasi-projective}, \emph{Fitting} objects of the category of complexes of $A$-modules.In this paper we demonstrate the following results:
a)If $C$ is a strongly hopfian chain complex (respectively strongly cohopfian chain complex) and $E$ a subcomplex which is direct summand then $E$ and $C/E$ are both strongly Hopfian (respectively strongly coHopfian) then $C$ is strongly Hopfian (respectively strongly coHopfian).
b)Given a chain complex $C$, if $C$ is quasi-injective and strongly-hopfian then $C$ is strongly cohopfian.
c)Given a chain complex $C$, if $C$ is quasi-projective and strongly-cohopfian then $C$ is strongly hopfian.
In conclusion the main result of this article is the following theorem:
Any \emph{quasi-projective} and \emph{strongly-hopfian} or \emph{quasi-injective} and \emph{strongly-cohofian} chain complex of $A$-modules is a \emph{Fitting} chain complex.
- Full Text: PDF
- DOI:10.5539/jmr.v6n3p81
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org