On Intersections of the Hyperbolicity Domain With Straight Lines
- Vladimir Kostov
Abstract
We consider the family of polynomials $x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots +a_n$, $a_i\in {\bf R}$, and its {\em hyperbolicity domain} $\Pi _n$, i.e. the set of values of the coefficients $a_i$ for which the polynomial is with real roots only. We prove that for $0\leq k\leq n-2$ there exist generic straight lines in ${\bf R}^n\cong Oa_1\ldots a_n$ intersecting $\Pi _n$ along $k$ segments and two half-lines.- Full Text: PDF
- DOI:10.5539/jmr.v6n3p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org