A Note on the $_{2}F_{1}$ Hypergeometric Function
- Armen Bagdasaryan
Abstract
The special case of the hypergeometric function $_{2}F_{1}$ represents the binomial series $(1+x)^{\alpha}=\sum_{n=0}^{\infty}\left(\:\begin{matrix}\alpha\\n\end{matrix}\:\right)x^{n}$ that always converges when $|x|<1$. Convergence of the series at the endpoints, $x=\pm 1$, depends on the values of $\alpha$ and needs to be checked in every concrete case. In this note, using new approach, we reprove the convergence of the hypergeometric series for $|x|<1$ and obtain new result on its convergence at point $x=-1$ for every integer $\alpha\neq 0$, that is we prove it for the function $_{2}F_{1}(\alpha,\beta;\beta;x)$. The proof is within a new theoretical setting based on a new method for reorganizing the integers and on the original regular method for summation of divergent series.- Full Text: PDF
- DOI:10.5539/jmr.v2n3p71
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org