MTL Algebra of Fractions and Maximal MTL Algebra of Quotients
- Dana Piciu
- Antoneta Jeflea
- Justin Paralescu
Abstract
In this paper we introduce the notions of $MTL$ \emph{algebraof fractions} and \emph{maximal $MTL$ algebra of quotients for a $MTL$ algebra} and prove constructively the existence of a maximal $MTL$ algebra of quotients (see Bu\c{s}neag \& Piciu, 2005, for $BL$ algebras).
- Full Text: PDF
- DOI:10.5539/jmr.v5n2p115
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org