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Abstract

In this paper we introduce the notions of MTL algebra of fractions and maximal MTL algebra of quotients for
a MTL algebra and prove constructively the existence of a maximal MT L algebra of quotients (see Busneag &
Piciu, 2005, for BL algebras).
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1. Introduction

A localization ring A¢ associated with a Gabriel topology ¥ for a ring A is a very important construction in
ring theory. For the therm localization we have in view Chapter IV: Localization in N. Popescu’s book (1971).
The notion of complete ring of quotients for a commutative ring is introduced in Lambek’s book (1966). This
localization is relative to the dense ideals and is a special case of localization ring. Schmid define in 1980, the
concept of maximal lattice of quotients for a distributive lattice using partial morphisms introduced by Findlay and
Lambek (1966). The multipliers (defined for a distributive lattice by W. H. Cornish in 1974 and 1980) plays an
important role in this constructions.

Basic (Fuzzy) logic (BL from now on) is the many-valued residuated logic introduced by Hajek in 1998 to cope
with the logic of continuous t-norms and their residua. Monoidal logic (ML from now on), introduced by Héhle
(1995), is a logic whose algebraic counterpart is the class of residuated lattices; MT L algebras (see Esteva &
Godo, 2001) are algebraic structures for the Esteva-Godo monoidal t-norm based logic (MTL), a many-valued
propositional calculus that formalizes the structure of the real unit interval [0, 1], induced by a left-continuous
t-norm. MTL algebras were independently introduced in Flondor, Georgescu, and Iorgulescu (2001) under the
name weak-BL algebras. The results obtained in this paper for MT L algebras are analogously to the ones obtained
for BL algebras in Bugneag and Piciu (2005). The main difference is that the equation x © (x — y) = x A y is not
valid for MTL algebras.

This paper is organized as follows: Section 2 is dedicated to basic definitions and rules of calculus in MT L algebras.
In Section 3 we introduce the notion of multiplier for a MT L algebra. In the proof of Lemma 9 and Lemma 10 we
have used mainly the rules c;3 and c;¢ which are specific for MTL algebras (by Proposition 4 and Corollary 5).
This explain why in this paper we have considered the particular case of MT L algebras and not the general case of
residuated lattice.

In Section 4 we introduce the notions of MTL algebra of fractions and maximal MT L algebra of quotients for a
MT L algebra. In Theorem 30 we prove the existence of the maximal MT L algebra of quotients for a MT L algebra.

This paper is a very important step in a future study of localization in the category of MT L algebras (and more
general, in the category of residuated lattices).

For a survey relative to notion of fractions and localization in algebra of logic see Rudeanu (2010).
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2. Definitions and First Properties
In this section we review the basic results relative to MT L algebras with more details and examples.

Definition 1 An algebra (L, A, V,0, —,0, 1) of type (2,2, 2,2,0,0) equipped with an order < is a residuated lattice
(Blyth & Janovitz, 1972; Galatos, Jipsen, Kowalski, & Ono, 2007; Turunen, 1999), if it satisfies:

(LRy) (L, A, V,0,1) is a bounded lattice relative to order <;
(LR,) (L,®, 1) is an ordered commutative monoid;
(LR3) (©, —) is an adjoint pair (z < x — y iff x @ z < y for every x,y,z € L).
For examples of residuated lattices see Busneag and Piciu (2006), Galatos et al. (2007), and Turunen (1999).

In this section by L we denote the universe of a residuated lattice. We denote x* = x — 0 and x™ = (x*)*, for
xeL.

We review some rules of calculus for residuated lattices:

Theorem 1 (Busneag & Piciu, 2006; Galatos et al., 2007) Let x,y,z € L. Then:
cNx—=>x=11-x=x0-x=1Ly<x—>y,x0x—=y<y,x—>1=1,x600=0;
(c)x<Lyiff x—>y=1;

(c3) x<yimpliesx©z<yQ®z,z > x<z—->yandy - 7<x >z

(x> —-2)=x0y 2z=y—>(x—>2,50xX0Y =x->y =y—>ux,
(cs) x0x* =0and xOy =0 if x <y*;

() xO (V2 =(x0y V(x0z);

(Dx—>OGA)=x—->yAKX—>2).

We shall denote B(L) = {x € L: x is a complemented element in (L, A, V,0, 1)}, which is a Boolean algebra (called
the Boolean center of L).

Theorem 2 (Busneag & Piciu, 2006) Fora € L, a € B(L) iffaV a* = 1.
Theorem 3 (Busneag & Piciu, 2006; Galatos et al., 2007) If a;,ar € B(L) and x,y € L, then:
(cg) a10x = a; A x;
(c)) xO(x = a))=a, Ax,a 0 (a; = x) =a; \Xx;
(cl0) a1 0 (x = y) =a; 0 [(a; ©x) = (a1 OY)];
(c1) x0(ar = a) =x0[(x0ar) - (xOaz)].
Definition 2 (Esteva & Godo, 2001) A MT L algebra is a residuated lattice satisfying the preliniarity equation:
() (x—=>yVy-x =L
The variety of MT L algebras will be denoted by M7 L.

Example 1 (Iorgulescu, 2004) Let L = {0,a, b, c,d, 1}, withO < a,b <c < 1,0 < b <d < 1, buta, b and, respective
¢, d are incomparable. Then (L, A, V,0, —,0, 1) is an MT L algebra, where the operations ® and — are defined as
follows:

— a0 o o]
=N N =
Q Q 6o 6 = =Q
SN A
O O === =0
SN
P NN
— Q0 & OO0
eNeNoNoNoNalla)
QO ©a o8
SN NoNoNoRaliN
o T8 ©O8 o6
ULATIT OO
— Q0 - o=

Proposition 4 (Esteva & Godo, 2001) Let L be a residuated lattice. The following conditions are equivalent:
@) Le MT L
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(ii) L is a subdirect product of linearly ordered residuated lattices;
@) (ci3) x > (yVz)=(x = y) V(x> 2),forany x,y,z € L;
@) (cs) xAy) > z=(x—>2)V(y— 2),forany x,y,z € L.
Corollary 5 (Esteva & Godo, 2001; Flondor, Georgescu, & lorgulescu, 2001) Let L € MT L. For every x,y,z € L:
(c15) (X AY)" = X"V y%
(c1e) xO (YA 2) = (xOy) A (xO2);
(i xAQ V) =@xAy)V(xA2;
(cy) xVy=((x—=y) 2> NA(y—x) —=x).

Remark 1 A MTL algebra L is a BL algebra iff in L is verified the divisibility condition: x ® (x = y) = x A y. So,
BL algebras are examples of MT L algebras; for an example of MT L algebra which is not BL algebra see Turunen
(1999, p. 16). Also, every linearly ordered residuated lattice is a MT L algebra.

3. Multipliers on a MTL Algebra
By L we denote the universe of a MT L algebra.

Let 7,(L) = {I: I is an ideal in the lattice (L, A, V, 0, 1)} (see Balbes & Dwinger, 1974) and Z(L) the set of all
decreasing subsets of L. We have that, 7(L) € 7 ,4(L) and if J;,J, € I(L), then J; N J, € I(L). Also, if J € I(L),
then O € J.

Definition 3 A map p : J — L, with J € 7(L), is a partial multiplier on L if it verifies the axioms:
(M) pa©x)=a0 px),acB(L),xeJ;
(M) x© (x = p(x)) = p(x), x € J;
(M3) If a € B(L) N J, then p(a) € B(L);
(My) x A pla)=aAn px),ae BLYNJ,x € J.
Remark 2 Since x © (x — p(x)) < x, from (M5) we conclude that p(x) < x, for x € J.
Remark 3 We use multiplier instead partial multiplier.

By d(p) € (L) we denote the domain of p; we call p total if d(p) = L.

Example 2 Let a € B(L) and J € I(L). Then the map p,: J — L, p,(x) = a A x @, O x, for every x € J is a
multiplier on L. We called this multiplier principal.

The axioms (M), (M3) and (M) are verified as in the case of BL algebras (see Busneag & Piciu, 2005). Also, for
XL xO(x = pu(x) =x0(x = (aAx) @ xO[x > a)A(x > x)]=x0(x — a) @ a A x = pu(x), hence
(M, ) is verified.

We denote p, by p, if d(p,) = L. In particular, for a = 0, 1 the maps pg = 0: L — L, po(x) = 0(x) = 0, for every
xeLandp; =1: L — L,pi(x) = 1(x) = x, for every x € L are total multipliers on L.

Remark 4 From (M,), if J = L, then for a = 1 we deduce that x A p(1) = p(x), so every total multiplier is principal.

Fora e Land J = (a] = {x € L: x < a} € I(L) we consider the map g,: J — L, g,(x) = a ® (a — x) for every
xeJ

Lemma 6 g, verify (M), (M3) and (My).

Proof. (M).For x € Jand e € B(L)NJ (hence x < a,e € B(L) and ¢ < a) we have: g,(e®x) = a®(a — (eOx)) @
a®(a — (eAx)) @ a®l(a — e)A(a - x)] (o) [a®(a — e)IA[a®(a — x)] = (ane)Agu(x) = eAgu(X) = eOg,(X).
(M3).If e € B(L)N J, then e € B(L) and ¢ < a, hence g,(¢) =a®(a —>e)=aAe=ec B(L).

(My). Consider x € J and e € B(L) N J (thatis, x,e < a and e € B(L)). Thus, eA g,(x) = e A[a® (a — x)] =
e0ada@—x)=(Nha)0a—x)=e0(a— x)and xA g,(e) =xA[a®(@—e)]=xA(ahe)=xNe=eOux.
Since x <a — x,thene ® x < e ® (a — x), hence xA g,(e) < eA gu(x).

From e < a we deduce thata - x < e — xhence e ®(a —» x) < x. Thene ® (@ = x) < e A x = ¢ ® x, hence eA

117



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 2; 2013

8a(X) = XA gq(e). O
Following Lemma 6, we can obtain an example of multiplier which is not principal.

For this, we consider L = [0, 1] (see Turunen, 1999, p. 16) and for all x,y € L we define

1 1
x0y=0, ifx+y§§andx®y=x/\y, ifx+y>§

x—>y=11fx£yandx—>y=max{§—x,y}ifx>y.

Then (L, A, V,0, —,0, 1) is a MT L—algebra. Obviously, L is not a BL—algebra and B(L) = {0, 1}.

Lemma7g1 (]—[0,3]—>L [0,1],g%(x)=%@(%—>x)f0revery0§x§%isamultiplieroan[O,]]

which is not prmctpal
Proof. Following Lemma 6, it is suffice to prove that g i verify (M), thatis, x© (x — g 1 X)) =g 1 (x), for every
0<x< % » »

1

F0r0<x<3wehave3—>x—max{§—% x} = max{é, xp =

gl(x)—3®6—0f0r0<x<—andg1(x)—3®xfor x <

nd —>x—x1f1<x<1 SO

. 1
1f0§x§6 <3

1

1,1 1 1
Smceforx>g,§+x> 3tz = 2wededucethatg1(x)—§ x:3/\x=x,sog%(x)=0,f0rOSxS s and

1

gl(x)zx,for6<xs 3

Thenx—>g xX)=x—-0= rnax{1 x,0} = 5—xf0r0<x< 3 andx—>g|(x)—x—>x— 1, for— <x< . For
x—00—>g1(0)—1

Soxo(x — gl(x)) = x@( —x)=0,for0 < x < éandxo(x - g%(x)) =x01 = x,foré <x< %.For
x—OO@(O—>g1(0))— ‘

We deduce that x © (x — g%(x)) = g%(x), for every 0 < x < %, that is g1 verify (M,), hence g1 is a multiplier
on L = [0, 1]. It is easy to prove that B(L) = {0, 1}, so if suppose by contrary that g 1 is principal, then g 1= po
or g1 = pi (with po, pi: [0, 31 — [0,1]). Since g1(3) = 3O (5 = 3) = 30 1 = 5 and po(3) = 0 it follows that
81 #Do. ’

Also,g%(é) =10(G >3 =100=0and pi(}) = ¢, S0 g1 # P O

For J € I(L), let M(J,L) = {p: J — L | p is a multiplier on L}, M(L) = (J{M(J,L): J € I(L)} and M(L) = {p:
L — L| pis amultiplier on L}.
Proposition 8 If J;,J, € T(L) and p; € M(J;, L),i = 1,2, then

(c19) p1(D) © [t = pa(D] = p2(1) © [t — p1(D)], for everyt € JiN Ja.

Proof. For t € J1N J, we have pi (1) O [t — pa(1)] = )

1O — p1()) O — p2(D) = [t = pa(D)]O(F — pi(D)
M
2y ol — pio). O
Definition 4 For J;, J, € (L) and p; € M(J;, L),i = 1,2, we define py Apa, p1V p2, p1®p2, p1 ~ p2: J1NJ, = L

(c19)

by (p1 A p2)(@) = p1(®) A p2(1),(p1 V p2)(®) = p1(®) V p2(8), (p1 @ p2)(t) = pi(H) O [t = p2(D)] =" p(H Ot —
P11, (p1 ~ p2)(t) =t O [pi(t) — p2(0)], forevery t € JiN Js.

Lemma9 p; A py e M(Jy N Jy, L).
Proof. Tt is sufficient to verify only (M,) (for (M), (M3) and (M4) see Busneag & Piciu, 2005).

Forany € Jin J, we have 10 [t = (p1 A p2)(D] = 10t = (p1(D) A p2)] L 101t = pi(D) A (1 = pa)] ‘Y

(10— piaDIATt0 (= pa)]Z pi0) A pa() = (p1 A p2)(D). O
Lemma 10 p, vV p, € M(J; N J,, L).

Proof. The axioms (M), (M3) and (M,) are verified as in the case of BL algebras (see Busneag & Piciu, 2005). To
verify (M), let £ € Ji0 Jy. Then 10 — (p; V p2)(0)] = 10[t = (pi()V p2d)] ‘L 101t = p1 D)V (¢t — pa(t))] L
10t = prO)] VIO (1 = pa)] ' pi&) v pat) = (p1 V p2)0. O
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Lemma 11 p; ® p, € M(J, N Jy, L).

Proof. (M) is verified as in the case of BL algebras (see Busneag, & Piciu, 2005), using (cyo). To prove (M,), let
t € JiN J, and denote p = p; ® ps.

To prove the equality t © (t — p(t)) = p(¢) it is sufficient to prove that p(r) < t © (t — p(¢)). We have p(t) =
PO = pt) =10 = pi)) O — pa) and 1O (1 — pt) = 1O [t = (pi1() © (1 = p2())] =
tot = o — pi() ©( — pa(t))]. So, to prove that p(r) < t © (t — p(t)) it is sufficient to prove that
ot = pi))o@d - p) <tot » o0 = pi() o — p)), thatis, ¢ < t — (1 © ¢) (with
@ & (t = p1(1) ©(t = pa(1))), which is true, since ¢ — [t = (1O p)] @ (pO1) = (tOp) = 1. (M3) and (M,) are
verified as in the case of BL algebras (see Busneag & Piciu, 2005), using (cj¢) and (cy;). O

Lemma 12 P1~ P2 € M(Jl N JQ,L).

Proof. (M) is verified as in the case of BL algebras (see Busneag & Piciu, 2005) using (c1o). To prove (M>), let
t € JiN Jy and denote p = py ~ py : Jy N J, — L; then p(f) =t © [p1(t) — p2(f)]. We have pi(t) — p(t) <t —
[1© (p1(1) = pa(1)], hence 1O [p1(1) = p2(D] S 1O [t = (1O (p1(1) = p2(D)] & p(1) <tO[r - p(H] & p@t) =
1o [t — p@)].

(M3) and (M, ) are verified as in the case of BL algebras (see Busneag, & Piciu, 2005) using (c19) and (c11). O
Proposition 13
(i) Forevery pe M(L),p®1=1Q p = p;

(it) For every pi,p2,p3 € M(L),p; ® (p2 ® p3) = (p1 ® p2) ® p3 and for every t € d(p;) N d(pz) N d(p3),
p1(®) < (p2 ~ p3)(@0) iff (p1 ® p2)(1) < p3(D);

(iif) For every pi, p; € M(L) and t € d(p1) N d(p2), (p1 ~> p2)(®) V (p2 ~ p)(@) = 1(1).

Proof. (i) If J = dom(p) and t € J, then (p @ 1)(?) = p() ©(t — 1) = p) © (¢t — 1) = p(t) © 1 = p(¢) and
A p)t) =t (t — p() = p(t), thatis, p®1 =10 p = p.

(ii) Let p; € M(J;, L) where J; € I(L),i = 1,2,3. Thus, fort € J; N J, N J3 we have [p; ® (p2 ® p3)]|(¥) =
((p2® p3)@) ©(F = pi(0) = [p2() O = psN]O ¢ — p1(D) = p(H) O [ = p3() © (¢ — p1())] =
=t = pi() O = p3()] = [P O = PO = p3(1) = (p1 ® p2)®) O (1 = p3(0) =
[(p1 ® p2) ® p3](), that is the operation ® is associative.

Forre JiNJyNJ3 wehave pi(r) < (p2 ~ p3)(1) & pi(t) < 10 [pa(1) = p3(D)]. So, by (c3), p1() O [t = p2(D] <

1O (1 = p2(1) © (p2(t) — p3(1)) & p1(D) O [t = pa(D] < pa(r) © (p2(1) = p3(1) < p3(1) & (P1 ® p2)(¥) < p3(D),
forany t € JyNJy,NJs, thatis, p; ® p» < p3. Conversely, if (p; ® p2)(f) < p3(¢) we have p,(1) O [t — p1(1)] < p3(0),

forany ¢ € J; N J, N J3. Obviously, 1 — pi(1) < pa(1) — p3(1) dro (t = p1(®) <10 (p2(1) = p3(1) & p1(0) <
(p2 ~ p3)(0).

(iif) We have (p1 ~> p2)(0) V (p2 ~ p)(@) = [1 O (p1(t) = p2())] V [t © (p2() = p1@)] = 10 [(p1() —
P2V (p2() = prN] =101 =1=1(). O

Corollary 14 (M(L), A, V,®,~-,0,1) is a MTL algebra.
Definition S (Esteva & Godo, 2001; Freytes, 2004) A MT L algebra L is called
(i) an IMTL algebra (involutive algebra) if it satisfies the equation
) x* = x;
(i) a S MTL algebra if it satisfies the equation
S)xAx =0
(iii) a WN M algebra (weak nilpotent minimum) if it satisfies the equation
W) (xoy) VIxAy) = (xoyl =1
(iv) alISMTL algebra if it is a S MT L algebra satisfying the equation
AD "o ((x02) » (O] = (x = y) =L
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Theorem 15

(i) If L is a BL algebra, then for every fi, f» € M(L), (fi®(fi ~ f))(x) = (fi Af2)(x), for every x € d(fi)Nd(f>);

@) If Lis an IMTL algebra, then f* = f, for every f € M(L);

(iii) If L is a S MTL algebra, then for every f € M(L), f A f* = 0;

(iv) If L is a WNM algebra, then for every fi, f» € M(L), (fi ® )"V ((fi A o) ~ (i ® f)) = 1;

(v) If L is a TIS MT L algebra, then for every f,g,h € M(L),[h"* ® (f ® h) ~» (g ® h))] ~ (f ~» g) = 1.
Proof. (i) Suppose Lis a BL algebra (see Remark 1). Let f1, o € M(L), fi: J1 = L, f>: J, = L, with J|, J, € I(L).
For every x € J; N Jy we have (fi ® (fi ~ £2)(x) = (fi A f2)(X) & (fi ~ 2)X) O [x = fi(0)] = fi(x) A f2(x)

(M>)

S x0[filx) = L]0 [x = filn] = i) A L(x) © (xO[x = i) O [fi(x) = (0] = i) A falx) &
A O[filx) = (0] = fi(x) A fr(x), which is true because L is supposed a BL algebra.
(if) Suppose L is an IMTL algebra. For f € M(L),f: J — L and x € J, we have f™ = (f ~» 0) ~» 0 and
fr@=xolxo f I Y xolr— (Fw) 1€ xolx > f(] 2’ f(x), hence f** = f.
(iii) Suppose L is a SMTL algebra. If f € M(L), f: L — L, then the equation f A f* = 0 is equivalent with
AW ~0) =0 f(x) Alxo (f(x)'] = 0, for every x € L, which is clearly (since f(x) A [x © (f(x))"] <
f) A (f(x)* =0), hence f A f*=0.
(iv) Suppose L is a WNM algebra. Let fi, > € M(L), fi,f»: L— Land x € L. We denote a = fi(x),b = fo(x). We
have ((f1 ® f2)" V ((fi A f2) ~ (/i ® 2))(x) = (/i ® f2)"(x0) V (xO((fi A f2)(0) = (/i ® 2)(x) = (xO (@O (x =
DY)V (x0(@Ab) = (@0 (x = b)) L x0 (@0 (x = b)) V([@Ab) - @6 (x - b))
Since b < x — b we deduce thata Ab < a A (x — b), hence (using (¢3)) (aA(x = b)) = (aO(x = b)) < (aAb) —
(a® (x - b)).
Since L is supposed a WNM—algebra we obtain 1 = (a® (x — b))* V(@A (x = b)) — (a®(x — b))
<@oO(x —>Db)"VN(anb) — (a®(x — b)), hence (a® (x = b)*V((aAb) - (a®(x = b)) = 1. Then
(L)' VIIAANL) ~(fief))x)=x0l=x=1x) & (fi® )" V({(/i )~ (i®f)=1
(v) Suppose now L is a [IS MTL algebra. From the condition x A x* = 0 (x € L), we deduce that x* V x
(x A x*)* = 0" =1, thatis, x* € B(L). For f,g,h: L — L, and x € L we denote a; = f(x),a; = g(x) and
a3 = h(x). Then h**(x) = x© (x — a}) @ LA ay’ @ x0ay, [ (feh ~ (g®h)x) =[x —
@loxo[(fenx) - g =[x » xo0a)]oxo[((x = a)0a3z) = (x = a) Ow3)]] =

v (€15)

1)
X0 (x = (xOa N O [(x = a) O as) - (x = @) 0as)] < (10" O [(x = ar) Oaz) — (x — ax) O a3)] =
H 2
x0[a O [((x = a1) ©a3) = (x> @) G a)]] S x0[(x = ap) = (x = a)] = x0 [(xO (x = ar)) — az] %’
X0 (a; = az) = (f ~ g)(x), hence [h™ @ ((f®h) ~ (g®@h)] ~ (f ~ g) = 1. O

Corollary 16 If L is a BL algebra (resp. an IMTL algebra, a SMTL algebra, a WNM algebra, a TISMTL
algebra) then M(L) is a BL algebra (resp. an IMTL algebra, a SMTL algebra, a WNM algebra, a TIS MTL
algebra).

Using the rules (cg), (c19) and (c;;) we obtain:
Lemma 17 v, : B(L) —» M(L),v.(a) = P, for every a € B(L), is a monomorphism of MTL algebras.

Definition 6 A subset J C L is called regular if for every x,y € L such that x A f =y A f for every f € B(L) N J,
then x = y.

Denote Re g(L) the set of all regular subset of L.

Example 3 We give an example of non-trivial regular subset in a MTL algebra. Consider L = {0,a, b, c,d, 1} the
MT L-algebra from Example 1. We have that B(L) = {0,a,d, 1} and if consider J = {0, b,d, a}, then J € I(L). It
is easy to prove that for any x,y € L with x # y, there is f € J N B(L) = {0,a,d} such that x A f # y A f, that s,
J € Reg(L).

Remark 5 The condition J € Reg(L) is equivalent with: if x,y € L and pynpur) = pyunsw), then x = y.
Lemma 18 If J,,J, € I(L) N Reg(L), then Jy N J, € T(L) N Reg(L).
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Denote M,.,(L) = {p € M(L): d(p) € I(L) N Reg(L)}.

Remark 6 By Lemmas 9-12 and 18 we deduce that if py, p» € M,,(L), then p| ® ps, p1 ~» p2 € Myeo(L).
Proposition 19 Let p: J — L be a multiplier on L with J € I(L) N Reg(L). Then (p V p*)(x) = x, for every x € J.
Proof. Leta € B(L)N J and x € J. Then

aA[px)V(xo(p))] =larpx)]VaAxo(p()))]

cio

= [xop@]Vx0ao(p()’] = [x0p@]V[x0ad (o p(x)]

aAlpVplx)

= [xOp@]V[x0ao (x0op@)]=[x0p@]Vxeao(xA pa)]
Z xop@]VI[x0ao (Vv (p@))] = [x0 p@]Vao (xox)V (xo (p@)))]
= [x0p@]V[ao OV (xo(p@))] =[x p@]Vaoxo (pa)]

= [x0p@]VIx0@o (p@))H 2 xopa) V(@ (pa)]

= x0O[p@)V (an(pa))]=x0[(p@Va A (paV (pla))]
xO(@aAl)=x0a=xAa,

so (p V p*)(x) = x, since J € Reg(L). O

Definition 7 Let two multipliers pi, p» on L. We say that p, extends p; if d(p) C d(p>) and pyay,) = pis if p2
extends p;, we write p; E p,. If we can not be extended a multiplier p to a strictly larger domain, we called p
maximal.

Lemma 20
@) If p1,p2 € M(L), p € M,o(L) and p C py, p C p,, then p; and p, coincide on the d(p;) N d(p2);

(i) any p € M,(L) can be extended to a maximal multiplier. For any principal multiplier p,, a € B(L), d(p,) €
I (L) N Reg(L) there is an uniquely total multiplier p, such that p, C p, and for any non-principal multiplier p
there is a maximal non-principal multiplier » such that p C r.

On M,.¢(L) we consider the relation p; defined by (p1, p2) € pr iff Prapnapy) = P2dpondp)-
Lemma 21 p; is an equivalence relation on M,.,(L) compatible with A, V,® and ~ .

Proof. Obviously, p; is an equivalence relation on M,,(L) compatible with A and V.

For the compatibility of p; with ® and ~ on M,.,(L), let (py, p2), (r1,12) € py.

Lett € d(p;) Nd(py) Nd(r;) Nd(ry). We have p(t) = pa(¢) and r(¢) = (1), so

(p1®r)(®) = pi() ©(t = r1(1)) = p2(t) © (1 = (1)) = (P2 @ r2)(1),

(p1~ (@) =10 [p1(t) = r(H)] = 1O [pa(r) = ra(D] = (p2 ~ r2)(D),
that is, (p1 ® r1, p2 ® 12), (p1 ~> 11, p2 ~> 12) € pr. O
For p € M,e,(L) with J = d(p) € I(L) N Reg(L), we denote by [p, J] the congruence class of p modulo p; and
L = M,eo(L)/pL -
On L” we define the order relation [py, J;] < [p2, Jo] iff pi(x) < p2(x), for every x € J; N J,.

It is a routine to prove the following result:

Lemma 22 (L"”, <) is a bounded lattice, where for [p1,J11,[p2, J2]l € L”, [p1, Ji1 A p2, Jol = [p1 A p2, Ji N Jo] and
(P, i1V Ip2, 2l =[p1 VP2, inJ2],0=[0,L],1=[1,L].

For [p1, J1],[p2, J2] € L”, we define [py,Ji] ® [p2, /2] = [p1 ® p2,J1 N Jo] and [p1, J1] ~ [p2, /2] = [p1 ~
p2,J1 N J2] (where [p; ® p; and p; ~ p; are defined in Definition 4).

Proposition 23 (L, A, V,®,~+,0,1) is a MT L-algebra.
Proof. We verity the axioms of MT L-algebras.

(LR,) Follows from Lemma 22;

(LR,) Follows from Proposition 13, (i), (ii);

121



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 2; 2013

(LR3) Follows from Proposition 13, (ii);
The preliniarity equation (c,) follows from Proposition 13, (iif). ]
Remark 7 From Theorem 2, Propositions 19 and 23 we deduce that L” is a Boolean algebra.

Remark 8 If consider ¥ = (L) N Re g(L) and the partially ordered systems {67 s}/ jer.ics (for I,J € 7,1 C J,6; -
M(J,L) — M(I, L) is defined by 6; ;(f) = fi1), then L” = lim, o M(I, L).

Lemma 24 [f consider vi : B(L) — L" defined by vi(e) = [pe, L] for any e € B(L), then:
(i) vr is a monomorphism of Boolean algebras;
(i) vi(B(L)) € Re g(L").

Proof. (i) See Lemma 17.

(i) To prove v (B(L)) € Re g(L"), we suppose by contrary that there exist py, p» € M,.,(L) such that [p,d(p1)] #

[p2,d(p2)] (hence we have a € d(p1)Nd(p2) such that pi(a) # pa(a)) and [p1, d(p)IA[pe, L1 = [p2, d(p2)]A[Pe, L]
for any [p., L] € vA(B(L)) N B(L") = pi(x) Ae A x = pa(x) Ae A xforany x € d(p;) Nd(p,) and any e € B(L).
For e = 1 and x = a we deduce that p;(a) A a = pa(a) A a © pi(a) = p2(a), a contradiction. U

Remark 9 Following Lemma 20 we can identify [p,, L] with p,, for every e € B(L). So, the boolean elements can
be identified with the elements of {p.: e € B(L)}.

Following the above consideration we deduce, as in the case of BL-algebras (see Busneag & Piciu, 2005), that:
Lemma 25 If [p,d(p)] € L” (with p € M,.(L) and J = d(p) € I(L) N Reg(L)), then J N B(L) € {e € B(L):
Pe Alp,d(p)] € B(L)}.
4. Maximal MTL Algebra of Quotients
In this section by L we denote a M T L-algebra.
Definition 8 A MTL algebra G is called MT L algebra of fractions of L if:
(Fry) B(L) is a MT L subalgebra of G;
(Fry) Forevery f,g,h € G, f # g, there is e € B(L) such thate A f # e A gand e A h € B(L).
We write L C G if G is a MTL algebra of fractions of L.

Definition 9 Q(L) is the maximal MTL algebra of quotients of L if L & Q(L) and for any MTL algebra G with
L C G there is a injective morphism of MT L algebras j: G — Q(L).

Proposition 26 If L is a MT L— algebra and L € G, then G is a Boolean algebra.

Proof. Indeed, if suppose that G is not a Boolean algebra, by Theorem 2, there is f € G such that f Vv f* # 1. Since
L C G, then there is a boolean element g such that g A f is boolean and g A (f V f*) # g. Since g A f € B(L), then

EANVEAN) =1=2@ANVEV)=1=2[@ANVEIV =1=[EVEIN(SfVeINVif=1=
[LA(fVEINVf =1=(fV f)Vg =1 By the unicity of the complement of g, we deduce that f V f* = g.
Then from g A (f V f7) # g we obtain g A g # g = g # g, a contradiction. Hence G is a Boolean algebra. ]

Corollary 27 Q(L) is a Boolean algebra.
As in Bugneag and Piciu (2005), we have:

Remark 10 If L is a Boolean algebra, obviously, B(L) = L. By Proposition 26, Q(L) is a Boolean algebra; the
axioms M, M5, M5 are equivalent with M4 and Q(L) is just Dedekind-MacNeille completion of L (Schmid, 1980).

Lemma 28 Let L C G ; then for every f,g € G, f # g, h
eNf#eANgande Nh; € B(L)fori=1,2,...,n(n=>?2).

Lemma 29 Let LE Gand g € G. Then I, = {e € B(L): e A g € B(L)} € IT(B(L)) N M,e(L).
Theorem 30 L” (defined in Section 3) is the maximal (boolean) MT L algebra Q(L) of quotients of L.

Proof. From Lemma 24, (i), B(L) is a MTL subalgebra of L”. Consider [fi,d(fi)], [f>,d(f>)], [f5,d(f3)] € L,
i, 2, 3 € Myo(L) such that [ 5, d(f2)] # [ f3,d(f3)]. Then we have x" € d(f>) Nd(f3) with fo(x") # f3(x').

Consider J = d(f1) € I(L) N Reg(L) and Ji, 4y = {a € B(L) : ps A [f1,d(f1)] € B(L)}. From Lemma 25,
J N B(L) € I, acry- If suppose that for any a € J N B(L), pa A [f2,d(f2)] = pa A 1f3,d(f3)], then [pg A fo,d(f2)] =

Lo e h, € G, there exists a boolean element e such that
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[Pa A f3,d(f3)], so for any x € d(f>) Nd(f3) we have (p, A f2)(x) = (pa A f3)(x)1.e. a A fo(x) = a A f3(x). Because
J e Reg(L), fo(x) = f3(x) for any x € d(f>) N d(f3) so [f>,d(f>)] = [f3,d(f3)], a contradiction.

If [, d(f2)] # [f3,d(f3)], then there is a € J N B(L), such that p, A [ f5,d(f2)] # pa A Lf3,d(f3)].
Since by Lemma 25, J N B(L) € Ji5 acsnfor this a € J N B(L) we have p, A [ f1,d(f1)] € B(L).
Now, consider G a MT L algebra such that L T G; obviously, B(L) € B(G)

L C G
<
LI/

By Lemma 29, Fora’ € G,J, ={e € B(L): e Ad’ € B(L)} € I(B(L)) N Reg(L).

Pa: Jo — L, po(x) = x A d’ is a multiplier. Indeed, (M) and (M,) are verified, because if ¢ € B(L) and x € J,,,
then p,(e©x) = (eOX)Ad = (eAX)ANd =eN(xAd)=eO(xANd)=eOpy(x),and xO(x = py(x)) =xO[x —
GAN L xAQRAT) = xAd = pa(x). Toverify (M), let e € Ju N B(L) = Jo. Thus, pe(e) = e Ad’ € B(L)
(since e € J,/). The condition (M,) is obviously verified, hence [p,, J,] € L”.

We define j: G — L”, by j(a') = [pa,Jo], for every a’ € G. Obviously, j(0) = 0. Fora’,b’ e Gand x € J, N Jy,
(J@)® jb'Nx) =@ Ax)0x » W AX)] =@ox)0[x > W AX)] =doxox - b Ax)] =
dOXAD A =d 0@ AX)=d 0B 0x)=(W@ob)ox=(do0b)Ax = jld ob)(x), hence
J@)e jib') = jl@ ob’) and (j@) ~ jb)(x) = xo [j@)x) = jb)H)X)] =x0[(d Ax) = B Ax)] =
O[(x0d) = (x0b)] W xo@ = b)=xA@ = V) = j@ — b)x), hence j(@) ~ jb') = j@ — ).

Now, let a’,b" € G such that j(a') = j(b’). It follows that [p,,Jy] = [pp,J»], S0 py(x) = pp(x) for any
xeJyNJy.Soad" Ax=0b" Axforany x € J, N Jy. By Lemma 28, if a’ # b’, since L C G, there is a boolean
element e such that e A @’,e A b’ € B(A) and e A a’ # e A b’ which is contradictory (since e A a@’,e A b’ € B(L)
implies e € J, N Jp). O

Proposition 31 Let L be a MT L-algebra. The following are equivalent:

(i) Every maximal multiplier on L has domain L;

(if) For every multiplier p € M(J, L) there is e € B(L) such that p = p,, (i.e., p(x) = e A x for any x € J);

(i) Q(L) =~ B(L).
Proof. (i) = (ii) Assume (i) and for p € M(J, L) let p’ its the maximal extension (by Lemma 20). By (i), we have
p': L — L.Pute = p'(l) € B(L) (by M3), then for every x € J , p(x) = p(x) A 1 L p(1) = x A e = p.(x), that
1S P = Pe-
(if) = (iii) Follow from Lemma 24.
(iit) = (i) Follow from Lemma 20 and Lemma 24. O
Remark 11

1) If L is a MTL algebra with B(L) = L, and L T G then G = {0, 1}, hence Q(L) = L” = L,. Indeed, if
ai,az,as € G,a; # ap, then there exists e € B(L) (by (Fry)) such that e A a; # e A ay (hence e # 0) and
e Aaz € B(L). Clearly, e = 1, hence a3 € B(L), thatis, G = B(L).

2) More general, if L is a MT L—algebra such that B(L) is finite and L T G then G = B(L), hence Q(L) = B(L).
Indeed, since L C G, we have B(L) C G. Let a € G. Then there is ¢ € B(L) such that e A a € B(L). Q(L) is finite,
so, there is a largest element e, € Q(L) with e, A a € B(L). Suppose ¢, V a # e,. Then there is e € B(L) such that
eN(e,Va)#eNhe,ande Aa € B(L). Because e Aa € B(L) wededucee <e,soe=eA(e,Va)+eNe,=¢e,a
contradiction. Hence e, V a = ¢,, so a < e,, consequently a = a A e, € Q(L), thatis G € Q(L). Then G = Q(L),
hence Q(L) = B(L).
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