Representation of Functions by Walsh's Series with Monotone Coefficients
- Razmik Melikbekyan
Abstract
There exists a series in the Walsh system $\{\varphi_{n}\}$ of the form\[
\sum_{i=1}^{\infty}a_{i}\varphi_{i},\quad\hbox{ with}\quad|a_{i}|\searrow0,
\]
that possess the following properties:
For any $\epsilon>0$ and any function $\displaystyle f\in L^{1}(0,1)$ there exists set $E\subset\lbrack0,1]$ $\left( \left\vert E\right\vert >1-\epsilon\right) $ and a sequence $\{\delta_{i}\}_{i=0}^{\infty},$ $\delta_{i}=0\ \hbox{or}\ 1$, such that the series
\[
\sum_{i=0}^{\infty}\delta_{i}a_{i}\varphi_{i}%
\]
converges to $f$ on $E$ in the $L^{1}(0,1)$-metric and on $[0,1]\diagdown E$ in the $L^{r}([0,1]\diagdown E)$ metric for all $r\in(0,1)$.
- Full Text: PDF
- DOI:10.5539/jmr.v5n1p107
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org