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Abstract

There exists a series in the Walsh system {ϕn} of the form

∞∑
i=1

aiϕi, with |ai| ↘ 0,

that possess the following properties:

For any ε > 0 and any function f ∈ L1(0, 1) there exists set E ⊂ [0, 1] (|E| > 1 − ε) and a sequence {δi}∞i=0,
δi = 0 or 1, such that the series

∞∑
i=0

δiaiϕi

converges to f on E in the L1(0, 1)-metric and on [0, 1]�E in the Lr([0, 1]�E) metric for all r ∈ (0, 1).
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1. Introduction

The problem of representing a function f by a series in classical and general orthonormal systems has a long

history.

A question posed by Lusin in 1915 asks whether it be possible to find for every measurable function [0, 2π] a

trigonometric series, with coefficient sequence converging to function. For real-valued functions, this question was

given an affirmative answer by Men’shov in 1941.

There are many other works (see Talalian, 1960; Men’shov, 1947, 1941; Grigorian, 1999, 2003, 2000; Ul’janov,

1972; Ivanov, 1989; Krotov, 1977; Kozlov, 1950) devoted to representations of functions by series in classical and

general orthonormal systems and the existence of different types of universal series in the sense of convergence

almost everywhere and by measure.

The papers by Men’shov (1947) and Kozlov (1950) were the first to construct some ordinary universal trigonomet-

ric series in the class of all measurable functions in the sense of a.e. convergence.

Grigoryan (2009) proved the following important result:

For any ε > 0 and any function f ∈ L[0, 1] there exists a sequence {δi}∞i=0, δi = 0 or 1, such that the series with

monotone coefficients ∞∑
i=0

δiaiϕi

converges to f in the L1(E)-metric. In Grigoryan’s paper properties of series outside the E remained open. In this

paper we succeed to ensure the convergence of the series to f outside E in weaker metric. Note that convergence

is impossible in the same metric.
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Let r be the periodic function, of least period 1, defined on [0, 1) by

r = χ[0,1/2) − χ[1/2,1).

The Rademacher system, R = rn : n = 0, 1, . . . , is defined by the conditions

rn(x) = r(2nx), ∀x ∈ R, n = 0, 1, . . . ,

and, in the ordering employed by Payley (see Golubov, Efimov, & Skvartsov, 1987; Paley, 1932), the n-th element

of the Walsh system {ϕn} is given by

ϕn =

∞∏
k=0

rnk
k , (1)

where
∑∞

k=0 nk2k is the unique binary expansion of n, with each nk either 0 or 1.

In the present work we prove the following theorem:

Theorem There exists a series in the Walsh system of the form

∞∑
i=1

aiϕi, with |ai| ↘ 0,

that possess the following properties:

For any ε > 0 and any function f ∈ L1(0, 1) there exists set E ⊂ [0, 1] (|E| > 1 − ε) and a sequence {δi}∞i=0, δi =
0 or 1, such that the series

∞∑
i=0

δiaiϕi

converges to f on E in the L1(0, 1)-metric and on [0, 1]�E in the Lr([0, 1]�E) metric for all r ∈ (0, 1).

The following problem remains open: is the Theorem true for the trigonometric system?

2. Basic Concepts and Terminology

We put

I( j)
k (x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ [0, 1] \ Δ( j)

k ,

1 − 2k, if x ∈ Δ( j)
k = (

j−1

2k ,
j

2k ),
k = 1, 2, . . . , 1 ≤ j ≤ 2k, (2)

and periodically extend these functions on R1 with period 1.

By χE(x) we denote the characteristic function of the set E, i.e.

χE(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ E,
0, if x � E.

(3)

Then, clearly

I( j)
k (x) = ϕ0(x) − 2k · χ

Δ
( j)
k

(x), (4)

and let for the natural numbers k ≥ 1, and j ∈ [1, 2k]

bi(χΔ( j)
k

) =

∫ 1

0

χ
Δ

( j)
k

(x)ϕi(x)dx = ± 1

2k , 0 ≤ i < 2k (5)

ai(I
( j)
k ) =

∫ 1

0

I( j)
k (x)ϕi(x)dx =

⎧⎪⎪⎨⎪⎪⎩
0, if i = 0, if i ≥ 2k,

±1, if 1 ≤ i < 2k.
(6)

Hence

χ
Δ

( j)
k

(x) =

2k−1∑
i=0

bi(χΔ( j)
k

)ϕi(x) (7)
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I( j)
k (x) =

2k−1∑
i=1

ai(I
( j)
k )ϕi(x) (8)

Lemma 1 Let dyadic interval Δ = Δ(k)
m = ((k − 1)/2m; k/2m), k ∈ [1, 2m] and numbers N0 ∈ N, γ � 0, ε ∈

(0, 1), r2 ∈ (0, 1) be given. Then there exists a measurable set E ⊂ [0, 1] and a polynomial Q in the Walsh system
{ϕk} of the following form

Q =
N∑

k=N0

akϕk

which satisfy the following conditions:

1) the coefficients {ak}Nk=N0
are 0 or ±γ | Δ |,

2) |E| > (1 − ε)|Δ|,

3) Q(x) =

⎧⎪⎪⎨⎪⎪⎩
γ : if x ∈ E
0 : if x � Δ

,

4)
∫
Δ
|γχΔ(x) − Q(x)|rdx < ε|Δ||γ|r , ∀r ∈ (0, r2),

5) max
N0≤m≤N

∫ 1

0

∣∣∣∣∣∣∣
m∑

k=N0

akϕk(x)

∣∣∣∣∣∣∣ dx <
|γ||Δ| 12
ε

1
(1−r2)

.

Proof. Let

ν0 =

[
1

1 − r2

log2

1

ε

]
; s = [log2 N0] + m. (9)

We define the polynomial Q(x) and the numbers cn, ai and b j in the following form:

Q(x) = γ · χ
Δ

(k)
m

(x) · I(1)
ν0

(2sx), x ∈ [0; 1]. (10)

cn = cn(Q) =

∫ 1

0

Q(x)ϕn(x)dx,∀n ≥ 0, (11)

bi = bi(χΔ(k)
m

), 0 ≤ i < 2m, a j = a j(I(1)
ν0

), 0 < j < 2ν0 . (12)

Taking into consideration the following equation

ϕi(x) · ϕ j(2
sx) = ϕ j·2s+i(x), if 0 ≤ i, j < 2s (see (1)) ,

and having the following relations (5)-(8) and (10)-(12), we obtain that the polynomial Q(x) has the following

form:

Q(x) = γ ·
2m−1∑
i=0

biϕi(x) ·
2ν0−1∑
j=1

a jϕ j(2
sx) = γ ·

2ν0−1∑
j=1

a j ·
2m−1∑
i=0

biϕ j·2s+i(x) =

N̄∑
k=N0

ckϕk(x), (13)

where

ck = ck(Q) =

⎧⎪⎪⎨⎪⎪⎩
± γ

2m or 0, if k ∈ [N0, N̄],

0, if k � [N0, N̄],
N̄ = 2s+ν0 + 2m − 2s − 1. (14)

Then let

E = {x; Q(x) = γ}.
Clearly that (see (2) and (10)),

|E| = 2−m(1 − 2−ν0 ) > (1 − ε)|Δ|, (15)

Q(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
γ, if x ∈ E,
γ(1 − 2ν0 ), if x ∈ Δ \ E,
0, if x � Δ.

(16)

Hence and from (9) for all r ∈ (0, r2) we obtain

∫
Δ

|γχ1(x) − Q(x)|rdx =
∫
Δ\E
|2ν0γ|rdx ≤ |γ|r |Δ|

(
1

2ν0

)(1−r2)

< |γ|r |Δ|ε.
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By Bessel’s inequality and by (13)-(16) we have

max
N0≤m≤N

∫ 1

0

∣∣∣∣∣∣∣
m∑

k=N0

akϕk(x)

∣∣∣∣∣∣∣ dx ≤ max
N0≤m≤N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ 1

0

∣∣∣∣∣∣∣
m∑

k=N0

akϕk(x)

∣∣∣∣∣∣∣
2

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
2

≤
(∫ 1

0

Q2(x)dx
) 1

2

≤≤ 2ν0 |γ| | Δ | 12≤ 2|γ| | Δ | 12
ε

1
(1−r2)

Lemma 1 is proved.

Lemma 2 Let given the numbers Ñ ∈ N, 0 < ε < 1, 0 < r1 < r2 < 1. Then for any function f ∈ L1(0, 1), ‖ f ‖L1
> 0,

one can find a set E ⊂ [0, 1] and a polynomial in the Walsh system

Q =
M∑

k=Ñ+1

akϕk ,

satisfying the following conditions:

1) 0 ≤ ak < ε and the non-zero coefficients in {ak}Mk=Ñ+1
are in decreasing order,

2) | E |> 1 − ε,
3)

∫ 1

0
|Q(x) − f (x)|rdx < ε , ∀r ∈ (r1, r2),

4)
∫

E |Q(x) − f (x)|dx < ε,

5) max
Ñ+1≤m≤M

∫ 1

0

∣∣∣∣∣∣∣∣
m∑

k=Ñ+1

akϕk(x)

∣∣∣∣∣∣∣∣
r

dx <
∫ 1

0

| f |rdx + ε,∀r ∈ (r1, r2),

6) max
Ñ+1≤m≤M

∣∣∣∣∣∣∣∣
∫

E

m∑
k=Ñ+1

akϕk(x)dx

∣∣∣∣∣∣∣∣ <
∫

E
| f (x)|dx + ε.

Proof. Let

δ =
ε

2
min

{ (
ε

2

) 1−r1
r1

;

(
sup

r∈(r1,r2)

∫ 1

0

| f (x)|rdx + 1

)−1 }
. (17)

We choose some non-overlapping binary intervals {Δν}ν0ν=1
and a step function

ϕ(x) =

ν0∑
ν=1

γν · χΔν (x) (18)

satisfying the conditions
ν0∑
ν=1

|Δν| = 1, max
1≤ν≤ν0

|γν||Δν| 12 < ε
4
· δ 1

1−r2 , (19)

ε

2
> |γ1||Δ1| > ... > |γν||Δν| > ... > |γν0 ||Δν0 | > 0, (20)

(∫ 1

0

| f − ϕ|dx
)
< δ2. (21)

Now let

B = {x ∈ [0, 1] : | f (x) − ϕ(x)| < δ}. (22)

Then by (17), (21) and (22)

|B| > 1 − ε
2
. (23)

Successively applying Lemma 1, we determine some sets Eν ⊂ [0, 1] and polynomials

Qν =
mν−1∑
j=mν−1

a jϕ j, (m0 = N̄ + 1), ν = 1, ..., ν0, (24)
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where a j = 0 or ±γ j|Δ j|, if j ∈ [mν−1,mν),

|Eν| > (1 − ε
2

) · |Δν|, (25)

Qν =

⎧⎪⎪⎨⎪⎪⎩
γν : if x ∈ Eν
0 : if x � Δν

, (26)

∫
Δν

|γνχΔν (x) − Qν(x)|rdx < δ|Δν||γν|r, ∀r ∈ (0, r2) , (27)

max
mν−1≤m≤mν−1

⎛⎜⎜⎜⎜⎜⎜⎝
∫ 1

0

∣∣∣∣∣∣∣
m∑

k=mν−1

akϕk(x)

∣∣∣∣∣∣∣ dx

⎞⎟⎟⎟⎟⎟⎟⎠ < 2|γν| | Δν | 12
δ

1
(1−r2)

, (28)

Then let

E =
ν0⋃
ν=1

Eν
⋂

B, (29)

Q =
ν0∑
ν=1

Qν =
M∑

k=Ñ+1

akϕk, (30)

From (20),(23), (24) (25) and (29) follows, that

|E| > 1 − ε.
and 0 ≤ ak < ε and the non-zero coefficients in {ak}Mk=Ñ+1

are in decreasing order.

By (17),(18),(21),(30) for all r ∈ (r1, r2) we have

∫ 1

0

|Q(x) − f (x)|rdx ≤
(∫ 1

0

| f (x) − ϕ(x)|dx
)r

+

ν0∑
ν=1

∫ 1

0

|γνχΔν (x) − Qν(x)|rdx < δr1 + δ ·
∫ 1

0

|ϕ(x)|r < ε,

i.e. the statements 1), 2), 3) of Lemma 2 are valid.

To verify the statements 5) and 6), for any Ñ < m ≤ M determine ν from the condition mν−1 ≤ m < mν. Then by

(23) and (30)
m∑

k=Ñ+1

akϕk =

ν−1∑
n=1

Qn +

m∑
k=mν−1

akϕk. (31)

Hence by (17)-(19), (21), (26), (27) and (28) we obtain that for all r ∈ (r1, r2)

∫ 1

0

|
m∑

k=Ñ+1

akϕk(x)|rdx ≤
ν−1∑
n=1

∫ 1

0

|Qn(x) − γnχΔn (x) |r dx +
ν0∑

n=1

∫ 1

0

|γnχΔn (x)|rdx+

+

∫ 1

0

|
m∑

k=mν−1

akϕk(x)|r ≤ δ ·
∫ 1

0

|ϕ(x)|rdx +
∫ 1

0

| f (x)|rdx + δr1 +
ε

2
≤

∫ 1

0

| f (x)|rdx + ε.

Since for any point x ∈ E, Q(x) = ϕ(x) (see (26),(29) and (30)), then from the conditions (17),(21), (28), (29) and

(31), we have ∫
E
|Q(x) − f (x)|dx =

∫
E
|ϕ(x) − f (x)|dx < ε.

∣∣∣∣∣∣∣∣
∫

E
|

m∑
k=Ñ+1

akϕk(x)dx

∣∣∣∣∣∣∣∣ ≤
∫

E

∣∣∣∣∣∣∣
ν−1∑
n=1

γnχΔn (x)dx

∣∣∣∣∣∣∣ +
∫

E

∣∣∣∣∣∣∣
m∑

n=mν−1

anϕn(x)dx

∣∣∣∣∣∣∣ dx ≤
∫

E
|ϕ(x)|dx +

ε

2
≤

∫
E
| f (x)|dx + ε.

Lemma 2 is proved.

3. Proof of the Theorem

Let

{ fk(x)}∞k=1, x ∈ [0, 1], (32)
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be the sequence of all algebraic polynomials with rational coefficients. Applying repeatedly Lemma 2, we obtain

sequences of {Ek}∞k=1
sets and polynomials in the Walsh systems {ϕn(x)}

Qk(x) =

Mk∑
i=Nk

aniϕni (x), (33)

where

N1 = 1; Nk = Mk−1 + 1, k ≥ 2,

which satisfy the following conditions:

2− j > |ani | ≥ |ani+1
| > 0, ∀i ∈ [Nk,Mk], k = 1, 2, . . . , (34)

∫ 1

0

|Qk(x) − fk(x)|rdx < 2−4(k+1), ∀r ∈ [2−k, 1 − 2−k], (35)

∫
Ek

|Qk(x) − fk(x)|dx < 2−4k, (36)

max
Nk≤m≤Mk

∫ 1

0

∣∣∣∣∣∣∣
m∑

i=Nk

aniϕni (x)

∣∣∣∣∣∣∣
r

dx <
∫ 1

0

| f j(x)|rdx + 2−k−1, k = 1, 2, . . . , (37)

max
Nk≤m≤Mk

∫
Ek

∣∣∣∣∣∣∣
m∑

i=Nk

aniϕni (x)

∣∣∣∣∣∣∣ dx <
∫ 1

0

| fk(x)|dx + 2−k−1, (38)

|Ek | > 1 − 2−k−1. (39)

Consider a series ∞∑
s=1

asϕs(x),where as = ani if s ∈ [ni, ni+1) (see (33)), (40)

and a set

E =
∞⋂

k=k0

Ek, where k0 = [log2

1

ε
] + 1. (41)

Clearly that (see (33), (34) and (39)-(41))

|ak | ↘ 0 and |E| > 1 − ε.
Let r ∈ (0, 1), then for some j0 > 1 we have r ∈

(
1
j0
, 1 − 1

j0

)
, and let f (x) ∈ Lr

(0,1).

We choose some fν1 (x), ν1 > j0, from sequence (32), to have

∫ 1

0

| f (x) − fν1 (x)|rdx < 2−4.

Denote that the numbers j0 < ν1 < ... < νq−1 and polynomials Qν1 (x), . . . ,Qνq−1
(x) are already determined satisfy-

ing to the following conditions:

∫ 1

0

| f (x) −
s∑

n=1

Qνn (x)|rdx < 2−4s, s ∈ [2, q − 1], (42)

max
Nνn≤m≤Mνn

∫ 1

0

∣∣∣∣∣∣∣∣
m∑

i=Nνn

aniϕni (x)

∣∣∣∣∣∣∣∣
r

dx < 2−n, n ∈ [2, q − 1] (43)

Let a function fνq (x), νq > νq−1 is from the sequence (32) such that

∫ 1

0

∣∣∣∣∣∣∣∣
⎡⎢⎢⎢⎢⎢⎢⎣ f (x) −

q−1∑
j=1

Q(ν j)

j (x)

⎤⎥⎥⎥⎥⎥⎥⎦ − fνq (x)

∣∣∣∣∣∣∣∣
r

dx < 2−4(q+1). (44)
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Hence by (42) we obtain ∫ 1

0

| fνq |rdx < 2−q−1. (45)

From the conditions (35), (37), (44) and (45) follows that

∫ 1

0

| f (x) −
q∑

j=1

Qν j (x)|rdx < 2−4q, (46)

max
Nνq≤m≤Mνq

∫ 1

0

∣∣∣∣∣∣∣∣
m∑

i=Nνq

aniϕni (x)

∣∣∣∣∣∣∣∣
r

dx < 2−q, (47)

Then we obtain that the series ∞∑
k=1

δkakϕk(x) (see (40)),

where

δk =

⎧⎪⎪⎨⎪⎪⎩
1, if k = ni, where i =

⋃∞
q=1[Nνq ,Mνq ],

0, otherwise .

converges to f (x) in the Lr
(0,1).

From the conditions (36), (38), (44) and (41) follows that

∞∑
k=1

δkakϕk(x) (see (40)),

series converges to f (x) in the L1(E) metric.

Theorem is proved.
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