Study on Integral Operators by Using Komato Operator on a New Class of Univalent Functions
- Abdolreza Tehranchi
- Ahmad Mousavi
- M. Waghefi
Abstract
Let $\mathbb{T}$ be the class of functions $ f(z)=z-\sum^\iny_{k=2} a_kz^k$which are analytic in the unit disk $U=\{z\in \mathbb{C}:|z|<1\}.$ By using Komato operator
$\mathcal{K}^{\delta}_{c}(f)$, we introduce a new subclass
$\mathbb{T}_{c}^{\delta}(\alpha,\beta)$, whose elemants satisfying
in $$ Re\{\frac{\mathcal{K}^{\delta}_{c}(f)}{z[\mathcal{K}^{\delta}_{c}(f)]'}\}>\alpha|\frac{\mathcal{K}^{\delta}_{c}(f)}{z[\mathcal{K}^{\delta}_{c}(f)]'}-1|+\beta, $$
and we study linear combination and derive some interesting
properties for the class $\mathbb{T}_{c}^{\delta}(\alpha,\beta).$
Also, we study on some integral operators on
$\mathbb{T}_{c}^{\delta}(\alpha,\beta).$
- Full Text: PDF
- DOI:10.5539/jmr.v3n4p67
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org