Study on Integral Operators by Using Komato Operator on a New Class of Univalent Functions

Abdolreza Tehranchi

Department of Mathematics, Islamic Azad University

South Tehran Branch, Tehran, Iran

Tel: 98-912-715-4556 E-mail: Tehranchi @azad.ac.ir, Tehranchiab@gmail.com

Ahmad Mousavi

Department of Mathematics, Islamic Azad University

South Tehran Branch, Tehran, Iran

Tel: 98-912-715-4556 E-mail: a_mousavi@azad.ac.ir,moussavi.a@gmail.com

M. Waghefi

Department of Pure Mathematics, Faculty of Mathematical Sciences

Tarbiat Modares University, P.O.Box: 14115-134, Tehran, Iran

E-mail: mehdi_va_1353@yahoo.com

Received: April 20, 2011 Accepted: May 6, 2011 Published: November 1, 2011

doi:10.5539/jmr.v3n4p67 URL: http://dx.doi.org/10.5539/jmr.v3n4p67

Abstract

Let \mathbb{T} be the class of functions $f(z) = z - \sum_{k=2}^{\infty} a_k z^k$ which are analytic in the unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. By using Komato operator $\mathcal{K}_c^{\delta}(f)$, we introduce a new subclass $\mathbb{T}_c^{\delta}(\alpha, \beta)$, whose elemants satisfying in

$$Re\{\frac{\mathcal{K}_{c}^{\delta}(f)}{z[\mathcal{K}_{c}^{\delta}(f)]'}\} > \alpha \left|\frac{\mathcal{K}_{c}^{\delta}(f)}{z[\mathcal{K}_{c}^{\delta}(f)]'} - 1\right| + \beta,$$

and we study linear combination and derive some interesting properties for the class $\mathbb{T}_c^{\delta}(\alpha,\beta)$. Also, we study on some integral operators on $\mathbb{T}_c^{\delta}(\alpha,\beta)$.

Keywords: Univalent, Starlike, Convex, Komato operator, Close-to-convex

1. Introduction

Let $\mathbb A$ denote the class of functions analytic in the unit disk $U=\{z\in\mathbb C:|z|<1\}$ and let $\mathbb T$ denotes the subclass of $\mathbb A$ consisting univalent functions of the from

$$f(z) = z - \sum_{k=0}^{\infty} a_k z^k \tag{1}$$

which are analytic in the unit disk U.

Definition 1.1. A function f(z) in \mathbb{T} is said to be in $\mathbb{T}^{\delta}(\alpha,\beta)$ if

$$Re\left\{\frac{\mathcal{K}_{c}^{\delta}(f)}{z[\mathcal{K}_{c}^{\delta}(f)]'}\right\} > \alpha \left|\frac{\mathcal{K}_{c}^{\delta}(f)}{z[\mathcal{K}_{c}^{\delta}(f)]'} - 1\right| + \beta,\tag{2}$$

where $\alpha \ge 0$, $0 \le \beta < 1$, $c \ge -1$ and $\delta > 0$ and operator $\mathcal{K}_c^{\delta}(f)$ is the Komato operator (Komato, 1990, p141-145) defined by

$$\mathcal{K}_c^{\delta}(f) = \int_0^1 \frac{(c+1)^{\delta}}{\Gamma(\delta)} t^c \left(\log \frac{1}{t}\right)^{\delta-1} \frac{f(tz)}{t} dt.$$
 (3)

By applying a simple calculation for $f \in \mathbb{T}$ we get

$$\mathcal{K}_c^{\delta}(f) = z - \sum_{k=2}^{\infty} B_k(c, \delta) a_k z^k, \tag{4}$$

where $B_k(c, \delta) = (\frac{c+1}{c+k})^{\delta}$.

This class $\mathbb{T}_c^{\delta}(\alpha,\beta)$ contains many well-known classes of analytic functions, for example $\mathbb{T}_c^0(0,\beta)$ is the class of starlike functions of order at most $\frac{1}{\beta}$, see (Najafzadeh, 2009, p81-89).

Definition 1.2. A function $f(z) \in \mathbb{T}$ is said to be *starlike of order* η $(0 \le \eta < 1)$ (Kanas, 2000, p647-657) if and only if $Re\{\frac{zf'(z)}{f(z)}\} > \eta$, $z \in U$. We use $S^*(\eta)$ for the class of starlike functions of order η and S^* for the class of starlike functions, $S^*(0) = S^*$.

Definition 1.3. A function $f(z) \in \mathbb{T}$ is said to be *convex of order* η $(0 \le \eta < 1)$ (Silverman, 1997, p221-227) if and only if $Re\{1 + \frac{zf''(z)}{f'(z)}\} > \eta$, $z \in U$. we use $K(\eta)$ for the class of convex functions of order η .

Definition 1.4. A function f(z) is called *close-to-convex of order* η $(0 \le \eta < 1)$ (Tehranchi, 2006, p105-118) if and only if there exists $g \in S^*$ satisfying $Re\{e^{i\theta}\frac{zf'(z)}{g(z)}\} > \eta, z \in U, -\frac{\Pi}{2} \le \theta < \frac{\Pi}{2}$; we denote this class by $C(\eta)$.

The family $\mathbb{T}_c^{\delta}(\alpha,\beta)$ is of special interest for it contains many well-known as well as new classes of analytic univalent functions. This family is reviewed by S. Najafzadeh, A. Ebadian (Najafzadeh, 2009, p81-89), and in other family with other result, A. Tehranchi, S.R. Kulkarni (Tehranchi, 2006, p105-118).

2. Main Results

We need the following elementary lemmas.

Lemma 2.1. If $\alpha \ge 0, 0 \le \beta < 1$ and $\gamma \in \mathbb{R}$, then $Rew > \alpha |w - 1| + \beta$ if and only if $Re[w(1 + \alpha e^{i\gamma}) - \alpha e^{i\gamma}] > \beta$ where w is any complex number.

Lemma 2.2. With the same condition in Lemma 2.1, Rew > α if and only if $|w - (1 + \alpha)| < |w + (1 - \alpha)|$.

The proof of the following result, which is given in (Najafzadeh, 2009, p81-89), needs some corrections and is given for the convenience of the reader.

Theorem 2.3. Let $f \in \mathbb{T}$, then f is in $\mathbb{T}_c^{\delta}(\alpha,\beta)$ if and only if

$$\sum_{k=2}^{\infty} \frac{\left[(1+\alpha) - k(\alpha+\beta) \right]}{1-\beta} B_k(c,\delta) a_k < 1, \tag{5}$$

where $\alpha \geq 0$, $0 \leq \beta < 1$, $c \geq -1$ and $\delta > 0$ and $B_k(c, \delta) = (\frac{c+1}{c+k})^{\delta}$.

Proof. Let (5) holds, we will show that (2) is satisfied and so $f(z) \in \mathbb{T}^{\delta}(\alpha, \beta)$. By Lemma 2.2 it is enough to show that

$$|w - (1 + \alpha |w - 1| + \beta)| < |w + (1 - \alpha |w - 1| - \beta)|,$$

where $w = \frac{\mathcal{K}_c^{\delta}(f)}{z[\mathcal{K}_c^{\delta}(f)]'}$, and $B = \frac{z[\mathcal{K}_c^{\delta}(f)]'}{|z[\mathcal{K}_c^{\delta}(f)]'|}$ and by using (4) we may write

$$L < \frac{|z|}{|z[\mathcal{K}_c^{\delta}(f)]'|} [\beta + \sum_{k=2}^{\infty} (k - (1+\alpha) + k(\alpha+\beta)) B_k(c,\delta) a_k]$$

$$<\frac{|z|}{|z[\mathcal{K}_c^{\delta}(f)]'|}[2-\beta-\sum_{k=2}^{\infty}[k+1+\alpha-(\alpha+\beta)k]B_k(c,\delta)a_k]< R,$$

where $L = |w - (1 + \alpha |w - 1| + \beta)|$, $R = |w + (1 - \alpha |w - 1| - \beta)|$ and it is easy to verify that R - L > 0. Therefore $f(z) \in \mathbb{T}^{\delta}_{c}(\alpha, \beta)$.

Conversely, suppose that $f(z) \in \mathbb{T}_c^{\delta}(\alpha, \beta)$. By Lemma 2.1 and letting $w = \frac{\mathcal{K}_c^{\delta}(f)}{z[\mathcal{K}_c^{\delta}(f)]'}$ in (2) we obtain $Re(w(1 + \alpha e^{i\gamma}) - \alpha e^{i\gamma}) > \beta$

or

$$Re\left[\frac{z-\sum_{k=2}^{\infty}B_k(c,\delta)a_kz^k}{z(1-\sum_{k=2}^{\infty}kB_k(c,\delta)a_kz^{k-1})}(1+\alpha e^{i\gamma})-\alpha e^{i\gamma}-\beta\right]>0$$

then

$$Re\left\{\frac{1-\beta-\sum_{k=2}^{\infty}(1-\beta k)B_{k}(c,\delta)a_{k}z^{k-1}-\alpha e^{i\gamma}\sum_{k=2}^{\infty}(1-k)B_{k}(c,\delta)a_{k}z^{k-1}}{(1-\sum_{k=2}^{\infty}kB_{k}(c,\delta)a_{k}z^{k-1})}\right\}>0,$$

for all $z \in U$. Letting $z \longrightarrow 1^-$ yields

$$Re\{\frac{1-\beta-\sum_{k=2}^{\infty}(1-\beta k)B_{k}(c,\delta)a_{k}-\alpha e^{i\gamma}\sum_{k=2}^{\infty}(1-k)B_{k}(c,\delta)a_{k}}{(1-\sum_{k=2}^{\infty}kB_{k}(c,\delta)a_{k})}\}>0$$

and so by the mean value theorem we have

$$Re\{1 - \beta - \sum_{k=2}^{\infty} [(1 - \beta k) + \alpha (1 - k)] B_k(c, \delta) a_k\} > 0.$$

Thus

$$1-\beta-\sum_{k=2}^{\infty}[(1-\beta k)+\alpha(1-k)]B_k(c,\delta)a_k>0$$

or

$$\sum_{k=2}^{\infty} [(1-\beta k) + \alpha(1-k)]B_k(c,\delta)a_k < 1-\beta.$$

Therefore

$$\sum_{k=2}^{\infty} \frac{\left[(1+\alpha) - k(\alpha+\beta) \right]}{1-\beta} B_k(c,\delta) a_k < 1$$

and the proof is complete.

Corollary 2.4. Let $f \in \mathbb{T}_c^{\delta}(\alpha, \beta)$, then

$$a_k < \frac{1-\beta}{[(1+\alpha)-k(\alpha+\beta)]B_k(c,\delta)}, \qquad k=2,3,4,\ldots$$

Definition 2.5. Let $J \in \{1,2,...,m\}$, $f_j(z) = z - \sum_{k=2}^{\infty} a_{k,j} z^k \in \mathbb{T}_c^{\delta}(\alpha,\beta)$. Then the linear combination function F(z) is defined by $F(z) = \sum_{j=1}^m p_j f_j(z)$ such that $\sum_{j=1}^{\infty} p_j = 1$.

Theorem 2.6. The function F(z) defined upon belongs to $\mathbb{T}_c^{\delta}(\alpha, \beta)$. **Proof.** We have

$$F(z) = \sum_{j=1}^{m} p_j(z - \sum_{k=2}^{\infty} a_{k,j} z^k) = z - \sum_{k=2}^{\infty} (\sum_{j=1}^{m} p_j a_{k,j}) z^k.$$

Thus

$$\sum_{k=2}^{\infty} \frac{[(1+\alpha) - k(\alpha+\beta)]}{1-\beta} B_k(c,\delta) (\sum_{j=1}^{m} p_j a_{k,j}) =$$

$$\sum_{i=1}^{m} p_{j} \left[\sum_{k=2}^{\infty} \frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} B_{k}(c,\delta) a_{k,j} \right] \le \sum_{i=1}^{m} p_{j} = 1.$$

This shows that $F(z) \in \mathbb{T}_c^{\delta}(\alpha, \beta)$ and so the proof is completed.

Theorem 2.7. Let $f(z) = z - \sum_{k=2}^{\infty} a_k z^k$, $g(z) = z - \sum_{k=2}^{\infty} b_k z^k$ belong to $\mathbb{T}_c^{\delta}(\alpha, \beta)$. Then the function $G(z) = z - \sum_{k=2}^{\infty} (a_k^2 + b_k^2) z^k$ is in $\mathbb{T}_{c_1}^{\delta}(\alpha, \beta)$, where

$$c_1 \le \inf_{k} \left[\frac{(\frac{(1+\alpha)-k(\alpha+\beta)}{2(1-\beta)})^{\frac{1}{\delta}} (\frac{c+1}{c+k})^2 - 1}{1 - (\frac{(1+\alpha)-k(\alpha+\beta)}{2(1-\beta)}) (\frac{c+1}{c+k})^2} \right].$$

Proof. Since $f, g \in \mathbb{T}_c^{\delta}(\alpha, \beta)$, we have

$$\sum_{k=2}^{\infty} [\frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta}]^2 (\frac{c+1}{c+k})^{2\delta} a_k^2 \leq \sum_{k=2}^{\infty} [\frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} B_k(c,\delta) a_k]^2 < 1$$

$$\sum_{k=2}^{\infty} \left[\frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} \right]^2 \left(\frac{c+1}{c+k} \right)^{2\delta} b_k^2 \le \sum_{k=2}^{\infty} \left[\frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} B_k(c,\delta) b_k \right]^2 < 1.$$

Thus

$$\sum_{k=2}^{\infty} \frac{1}{2} [\frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} B_k(c,\delta)]^2 (a_k^2 + b_k^2) < 1.$$

Now we must show

$$\sum_{k=2}^{\infty} \frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} B_k(c_1,\delta) (a_k^2 + b_k^2) < 1.$$

This inequality holds if

$$\frac{(1+\alpha)-k(\alpha+\beta)}{1-\beta}B_k(c_1,\delta) \leq \frac{1}{2}(\frac{(1+\alpha)-k(\alpha+\beta)}{1-\beta}B_k(c,\delta))^2$$

or

$$B_k(c_1,\delta) \leq \frac{1}{2} (\frac{(1+\alpha)-k(\alpha+\beta)}{1-\beta}) (\frac{c+1}{c+k})^{2\delta}.$$

Therefore it is enough

$$c_1 \le \frac{\left(\frac{(1+\alpha)-k(\alpha+\beta)}{2(1-\beta)}\right)^{\frac{1}{\delta}} \left(\frac{c+1}{c+k}\right)^2 - 1}{1 - \left(\frac{(1+\alpha)-k(\alpha+\beta)}{2(1-\beta)}\right) \left(\frac{c+1}{c+k}\right)^2}$$

and this gives the result.

3. Study on some of Integral operators on $\mathbb{T}_c^{\delta}(\alpha,\beta)$

Definition 3.1. Let $f(z) \in \mathbb{T}_c^{\delta}(\alpha, \beta)$, the function $F_{\mu}(z)$ is defined by

$$F_{\mu}(z) = (1 - \mu)z + \mu \int_{0}^{z} \frac{f(t)}{t} dt,$$
 (6)

that $\mu \ge 0$, $z \in U$ if $0 \le \mu \le 2$.

Next we investigate some of properties of the function $F_{\mu}(z)$ in the class $\mathbb{T}_{c}^{\delta}(\alpha,\beta)$.

Theorem 3.2. The function $F_{\mu}(z)$ defined upon belongs to $\mathbb{T}_{c}^{\delta}(\alpha,\beta)$.

Proof. Let $f(z) \in \mathbb{T}_c^{\delta}(\alpha, \beta)$, we have

$$F_{\mu}(z) = (1-\mu)z + \mu [\int_0^z dt - \sum_{k=2}^{\infty} \int_0^z a_k t^{k-1} dt] = z - \sum_{k=2}^{\infty} \frac{1}{k} \mu a_k z^k.$$

Therefore, since $f(z) \in \mathbb{T}_c^{\delta}(\alpha, \beta)$, we have

$$\sum_{k=2}^{\infty}\frac{\left[(1+\alpha)-k(\alpha+\beta)\right]}{1-\beta}B_k(c,\delta)\frac{1}{k}\mu a_k<\sum_{k=2}^{\infty}\frac{\left[(1+\alpha)-k(\alpha+\beta)\right]}{1-\beta}B_k(c,\delta)\frac{\mu}{2}<1.$$

So the proof is completed.

Theorem 3.3. The function $F_{\mu}(z)$ is starlike of order $\eta(0 \le \eta \le 1)$ in $|z| < r_1(\alpha, \beta, \eta)$, if

$$r_1(\alpha, \beta, \eta) = \inf_{k} \left\{ \frac{1 - \eta}{\mu(1 + k - k\eta - \frac{1}{k})} \frac{(1 + \alpha) - k(\alpha + \beta)}{1 - \beta} B_k(c, \delta) \right\}^{\frac{1}{k-1}}.$$

Proof. For $r_1(\alpha, \beta, \eta)$, we must show that $\left|\frac{zF'_{\mu}}{F_{\mu}} - 1\right| < 1 - \eta$, or show that

$$|\frac{\sum_{k=2}^{\infty}z^ka_k(\frac{1}{k}-1)\mu}{z-\sum_{k=2}^{\infty}\frac{\mu a_k}{k}z^k}|<\frac{\sum_{k=2}^{\infty}|z|^{k-1}a_k(\frac{1}{k}-1)\mu}{1-\sum_{k=2}^{\infty}\frac{\mu a_k}{k}|z|^{k-1}}<1-\eta,$$

$$\sum_{k=2}^{\infty} |z|^{k-1} a_k \mu \frac{(1+k-k\eta-\frac{1}{k})}{1-\eta} < 1.$$

Therefore it is enough, by Theorem 2.3 and Corollary 2.4, letting

$$|z|^{k-1} < \frac{(1-\eta)[(1+\alpha)-k(\alpha+\beta)]}{\mu(1+k-k\eta-\frac{1}{k})(1-\beta)} B_k(c,\delta).$$

Theorem 3.4. The function $F_{\mu}(z)$ is convex of order $\eta(0 \le \eta \le 1)$ in $|z| < r_2(\alpha, \beta, \eta)$, if

$$r_2(\alpha,\beta,\eta) = \inf_{k} \left\{ \frac{1-\eta}{\mu(k-\eta)} \frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} B_k(c,\delta) \right\}^{\frac{1}{k-1}}.$$

Proof. For $r_2(\alpha, \beta, \eta)$, we must show that

$$\left|\frac{zF_{\mu}^{\prime\prime}(z)}{F_{\mu}^{\prime}(z)}\right|<1-\eta$$

or

$$\left|\frac{\sum_{k=2}^{\infty}(k-1)\mu a_k z^{k-1}}{1-\sum_{k=2}^{\infty}\mu a_k z^{k-1}}\right| \leq \frac{\sum_{k=2}^{\infty}(k-1)\mu a_k |z|^{k-1}}{1-\sum_{k=2}^{\infty}\mu a_k |z|^{k-1}} < 1-\eta,$$

$$\sum_{k=2}^{\infty} (k-1)\mu a_k |z|^{k-1} + (1-\eta) \sum_{k=0}^{\infty} \mu a_k |z|^{k-1} \le 1 - \eta,$$

$$\sum_{k=0}^{\infty} \mu a_k |z|^{k-1} \frac{(k-\eta)}{1-\eta} \le 1.$$

Therefore it is enough, by Theorem 2.3 and Corollary 2.4, that

$$|z|^{k-1} < \frac{1-\eta}{\mu(k-\eta)} \frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} B_k(c,\delta) .$$

Theorem 3.5. If $f \in \mathbb{T}^0_c(0,\beta) = S^*(\beta)$ and $\frac{f(z)}{z} \neq 0$ also $0 \leq \mu < 1$, then $F_\mu(z)$ is close-to-convex of order μ . **Proof**. We have $F'_\mu(z) = (1-\mu) + \mu \frac{f(z)}{z}$ so $\frac{zF'_\mu(z)}{f(z)} = \mu + \frac{(1-\mu)z}{f(z)}$. Then

$$Re(\frac{zF'_{\mu}(z)}{f(z)}) = \mu + (1 - \mu)Re(\frac{z}{f(z)}) > \mu.$$

This shows that $F_{\mu}(z)$ is close-to-convex of order μ .

Definition 3.6. Let $f \in \mathbb{T}_c^{\delta}(\alpha, \beta)$, then we define, for every $\gamma(0 \le \gamma < 1)$, the function $H_{\gamma}(z)$, by

$$H_{\gamma}(z) = (1 - \gamma)f(z) + \gamma \int_0^z \frac{f(t)}{t} dt. \tag{7}$$

er μ .

Theorem 3.7. The function $H_{\gamma}(z)$ defined upon belongs to $\mathbb{T}_{c}^{\delta}(\alpha,\beta)$.

Proof. Let $f(z) \in \mathbb{T}_c^{\delta}(\alpha, \beta)$, then we have

$$H_{\gamma}(z) = z - \sum_{k=2}^{\infty} (1 + \frac{\gamma}{k} - \gamma) a_k z^k.$$

Now, since $(1 + \frac{\gamma}{k} - \gamma) < 1, k \ge 2$, therefore by (4), we have

$$\sum_{k=2}^{\infty} \frac{\left[(1+\alpha) - k(\alpha+\beta) \right]}{1-\beta} B_k(c,\delta) (1+\frac{\gamma}{k} - \gamma) a_k < 1.$$

So we obtain $H_{\gamma}(z) \in \mathbb{T}_c^{\delta}(\alpha, \beta)$.

Theorem 3.8. The function $H_{\gamma}(z)$ is starlike of order $\gamma(0 \le \gamma \le 1)$ in $|z| < r_1(\alpha, \beta, \gamma)$, if

$$r_1(\alpha,\beta,\gamma) = \inf_{k} \left\{ \frac{(1-\gamma)[(1+\alpha)-k(\alpha+\beta)]}{(1-\beta)} B_k(c,\delta) \right\}^{\frac{1}{k-1}}.$$

Proof. For $r_1(\alpha, \beta, \gamma)$ we must show that $\left|\frac{zH'_{\gamma}}{H_{-}} - 1\right| < 1 - \eta$,

or

$$|\frac{\sum_{k=2}^{\infty}z^{k}a_{k}(\frac{\gamma}{k}-\gamma)}{z-\sum_{k=2}^{\infty}(1+\frac{\gamma}{k}-\gamma)a_{k}z^{k}}|<\frac{\sum_{k=2}^{\infty}|z|^{k-1}a_{k}(\gamma-\frac{\gamma}{k})}{1-\sum_{k=2}^{\infty}(1+\frac{\gamma}{k}-\gamma)a_{k}|z|^{k-1}}<1-\gamma,$$

or

$$\sum_{k=2}^{\infty} |z|^{k-1} \frac{a_k}{1-\gamma} < 1.$$

Therefore it is enough, by Theorem 2.3 and Corollary 2.4, letting

$$|z|^{k-1} < \frac{(1-\gamma)[(1+\alpha)-k(\alpha+\beta)]}{(1-\beta)}B_k(c,\delta).$$

Theorem 3.9. The function $H_{\gamma}(z)$ is convex of order $\gamma(0 \le \gamma \le 1)$ in $|z| < r_2(\alpha, \beta, \gamma)$, if

$$r_2(\alpha,\beta,\gamma) = \inf_k \left\{ \frac{1-\eta}{\mu(k-\eta)} \frac{(1+\alpha) - k(\alpha+\beta)}{1-\beta} B_k(c,\delta) \right\}^{\frac{1}{k-1}}.$$

Proof. For $r_2(\alpha, \beta, \gamma)$, we must show that

$$\left|\frac{zH_{\gamma}''(z)}{H_{\gamma}'(z)}\right| < 1 - \gamma.$$

So

$$\left| \frac{\sum_{k=2}^{\infty} k(k-1)(1+\frac{\gamma}{k}-\gamma)a_k z^{k-1}}{1-\sum_{k=2}^{\infty} k(1+\frac{\gamma}{k}-\gamma)a_k z^{k-1}} \right| \leq \frac{\sum_{k=2}^{\infty} k(k-1)(1+\frac{\gamma}{k}-\gamma)a_k |z|^{k-1}}{1-\sum_{k=2}^{\infty} k(1+\frac{\gamma}{k}-\gamma)a_k |z|^{k-1}} < 1-\gamma,$$

$$\sum_{k=2}^{\infty} k^2 (1 + \frac{\gamma}{k} - \gamma) a_k |z|^{k-1} \le 1.$$

Therefore it is enough, by Theorem 2.3 and Corollary 2.4,

$$|z|^{k-1}<\frac{1}{k^2(1+\frac{\gamma}{k}-\gamma)}\frac{(1+\alpha)-k(\alpha+\beta)}{1-\beta}B_k(c,\delta)\;.$$

Theorem 3.10. If $f \in \mathbb{T}_c^0(0,\beta)$ and $\frac{f(z)}{z} \neq 0, z \in U$ also $0 \leq \gamma < 1$ then $H_{\gamma}(z)$ is close-to-convex of order γ . **Proof**. We have $H'_{\gamma}(z) = (1-\gamma)f'(z) + \frac{\gamma f(z)}{z}$, so $\frac{zH'_{\gamma}(z)}{f(z)} = \gamma + (1-\gamma)\frac{zf'(z)}{f(z)}$. Thus

$$Re(\frac{zH_{\gamma}'(z)}{f(z)}) = \gamma + (1-\gamma)Re(\frac{zf'(z)}{f(z)}) > \gamma.$$

This shows that $H_{\gamma}(z)$ is close-to-convex of order γ .

References

- A. Tehranchi, S.R. Kulkarni. (2006). Study of the class of univalent functions with negative coefficients defined by Ruscheweyh derivatives. II, *J. Rajasthan Acad. Phys. Sci.*, 5, no. 1, 105-118.
- A. Teranchi and S.R. Kulkarni. (2006). Some integral operators defined on p-valent function by using hypergeometric functions, *Stud. Univ. Babees-Bolyai Math.*, 51, no. 2, 127-141.
- H. Silverman. (1997). Partial sum of starlike and convex function, *J.Math.Anal.Appl.* 209, 221-227. http://dx.doi.org/10. 1006/jmaa.1997.5361
- S.H. Najafzadeh and A. Ebadian. (2009). Neigborhoods and partial sum property for univalent holomorphic function in terms of Komato operator, *Acta Universitatis Apulensis*, 19, 81-89.
- S. Kanas and A. Wisniowska. (2000). Conic domains and starlike functions, *Rev.Roumaine Math. pures Appl*, 45(3), 647-657.
- Y. Komato. (1990). On analytic prolongation of a family of operators, Mathematica (Cluj), 39(55), 141-145.